




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、立几中的平行问题平行关系的证明的基本思路:利用点线面关系的互换;立几问题转化为平面问题解决。1平面内如何判断线线平行:平面几何的知识:平行四边形(另一组对边平行且相等) ;三角形(中位线、线段成比例)等。2公理4:平行于同一直线的两直线互相平行。3垂直于同一个平面的两条直线平行(垂线可以平移)。4线面关系的互换: 线线平行线面平行 面面平行(1)线线线面线面平行的判定定理:如果平面外一条直线和平面内的一条直线平行,那么直线和平面平行;(2)(两)线面面面面面平行的判定定理:一个如果平面内有两条相交直线和另一个平面平行,则这两个平面平行;(3)面面线面面面平行的性质定理:若两个平面平行,则其中一
2、个平面内的任何一条直线与另一个平面平行。*(4)面面线线面面平行的性质定理:如果两个平行平面同时与第三个 平面相交,那么它们的交线平行;*(5)线面线线线面平行性质定理:一条直线和一个平面平行,那么经过这条直线的任一平面与此平面的交线与该直线平行;相关例题:1(2012辽宁文)如图,直三棱柱,点分别为和的中点。 ()证明:平面; ()求三棱锥的体积。【答案】2.(2010北京)如图,正方形和四边形所在的平面互相垂直,。()求证:平面;()求证:平面;()求二面角的大小。3.(2012山东文)如图,几何体是四棱锥,为正三角形,.()求证:;()若,M为线段AE的中点,求证:平面.4(2009浙江
3、20090423理20)如图,平面平面,是以为斜边的等腰直角三角形,分别为,的中点, (I)设是的中点,证明:平面; (II)证明:在内存在一点,使平面,并求点到,的距离ABCDPQM5(2013浙江)如图,在四面体中,平面,,.是的中点, 是的中点,点在线段上,且.(1)证明:平面;(2)若二面角的大小为,求的大小.6(2013安徽)如图,圆锥顶点为.底面圆心为,其母线与底面所成的角为22.5°.和是底面圆上的两条平行的弦,轴与平面所成的角为60°.()证明:平面与平面的交线平行于底面; ()求.【答案】7.(2012浙江文)如图,在侧棱垂直底面的四棱柱中,是的中点,是平
4、面与直线的交点.(1)证:(i);(ii)平面;(2) 求与平面所成的角的正弦值.【答案】8.(2011山东文)如图,在四棱台中,平面,底面是平行四边形,60°()证明:;()证明:.9.(2012福建理)如图,在长方体中,为中点。()求证:;()在棱上是否存在一点,使得平面?若存在,求的长;若不存在,说明理由。()若二面角的大小为,求的长。【答案】(3)立几中的垂直问题垂直关系的证明的基本思路:利用点线面关系的互换;立几问题转化为平面问题解决。1平面内如何判断线线垂直:(平面几何的知识)等腰三角形(三线合一);直角三角形(两角和为;勾股定理,有时要用余弦定理求长度);圆:直径所对的
5、圆周角为直角(三角形某边的中线等于边长一半能够成圆);菱形(邻边相等的平行四边形为菱形,从而得出对角线互助垂直);*矩形(对角线相等的平行四边形为矩形,从而得出相邻两边垂直);*平面内两平行直线,其中一条垂直于某直线,另一条也垂直于这条直线。2线面关系的互换: 线线垂直线面垂直 面面垂直(1)(两)线线垂直线面垂直线面垂直的判定定理:如果一条直线与平面的两条相交直线都垂直,那么这条直线与此平面垂直;(2)线面垂直线线垂直线面垂直的性质定理:如果一条直线垂直于一个平面,那么该直线垂直于此平面内的任一直线;(3)线面垂直面面垂直(找垂线)面面垂直的判定定理:如果一个平面经过或平行于另一个平面的垂线
6、,那么这两个平面垂直;*(4)面面垂直线面垂直(已知条件有“面面垂直”才会用到这个定理)面面垂直的性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面;3. 结论要证明异面直线垂直、面面垂直都是转化为线面垂直的。4条件如有面面垂直,一定优先转化为线面垂直。相关例题:()()图61如图6()所示,在边长为12的正方形中,点在线段上,且,作/,分别交、于点、,作/,分别交、于点、,将该正方形沿、折叠,使得与重合,构成如图6()所示的三棱柱(1)在三棱柱中,求证:平面;(2)求(答案:20)2(2013广东)如图1,在等腰直角三角形中,分别是上的点,为的中点.将沿折起,得
7、到如图2所示的四棱锥,其中.() 证明:平面;() 求二面角的平面角的余弦值.(答案:).COBDEACDOBE图1图23(2013江西)如图,四棱锥中,平面,为的中点,为的中点,连接并延长交于.(1)求证:;(2)求平面与平面的夹角的余弦值.()4.(2011山东文)如图,在四棱台中,平面,底面是平行四边形,60°证明:;ABCDA1B1C1D1EF5如图所示,在棱长为2的正方体中,分别是、的中点.(1)求证:平面; (2)求证: ;(3)求三棱锥的体积. (答案:1)6(2013辽宁)如图,是圆的直径,垂直圆所在的平面,是圆上的点.(I)求证:(II)若,求二面角的余弦值。(答案
8、:)7.(2010福建理)如图,圆柱内有一个三棱柱,三棱柱的底面为圆柱底面的内接三角形,且AB是圆直径.()证明:平面平面;()设AB=,在圆柱内随机选取一点,记该点取自于三棱柱内的概率为.(i)当点C在圆周上运动时,求的最大值;(ii)记平面与平面所成的角为,当取最大值时,求的值.(答案:(2);(3))8.(2011湖南理)如图5,在圆锥中,已知,圆的直径,是的中点,为的中点(I)证明:(II)求二面角的余弦值(答:)9(2010北京)如图,正方形和四边形所在的平面互相垂直,。()求证:平面;()求证:平面;()求二面角的大小。(答:)10(2009深圳一模)如图,为圆的直径,点、在圆上,
9、矩形和圆所在的平面互相垂直已知,()求证:平面平面; ()求直线与平面所成角的大小;()当的长为何值时,二面角的大小为?【答案】(2);(3);11.如图所示的几何体是将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中沿切面向右水平平移后得到的分别为弧的中点,分别为的中点.(1)证明:四点共面;(2)设为中点,延长到,使得到的,证明:平面立体几何求空间角问题一、定义法:求解空间角的大小,一般都是根据有关角的定义(如异面直线所成的角、斜线和平面所成的角、二面角的平面角),把空间角转化为平面角来求解的。BACDEFO图1例1.如图,在棱长为2的正方体中,是底面的中心,E、F分别是、的中点,那
10、么异面直线和所成的角的余弦值等于( )A、B、C、D、点评:求异面直线所成的角,一般都是通过“选点平移”将异面直线所成的角转化为共面相交的两直线的夹角来完成,但要特别注意两条异面直线所成的角的范围是。例2.如图,在四棱锥中,正与正方形互相垂直。(1)求直线与所成角的余弦值;(2)求直线与平面所成角的正弦值.答案:(1);(2).点评:求直线与平面所成的角的关键是抓射影,而由斜线上一点作平面的垂线时,需要确定垂足的位置,然后再将这个角放在三角形中利用三角形的边角关系求解。ex1.在直三棱柱中,。(1)求直线与所成角的大小;(2)求直线与平面所成角的正弦值;(3)求直线与平面所成角的正弦值.(答案
11、:(1);(2);(3)例3. (2009深圳二模)如图一,平面四边形关于直线对称,把沿折起(如图二),使对于图二,完成以下各小题:()求二面角的余弦值;()证明:平面;()求直线与平面所成角的正弦值BCDA图2CBDA图1答案:(1);(3)。点评:求两平面所成二面角的大小,一般是先根据二面角的定义,作出二面角的平面角,然后在三角形中求解。 Ex2.(2006广东卷)如图所示,AF、DE分别是O ,O1的直径.AD与两圆所在的平面均垂直,AD8,BC是O的直径,ABAC6,OE/AD.()求二面角BADF的大小;()求直线BD与EF所成角的余弦值.答案:(1);(2);B1C1图7ABCDF
12、A1D1Ex3.如图7,在棱长为1的正方体ABCDA1B1C1D1中,AC与BD交于点E,C1B于BC1交于点F。(1)求证:A1C平面BDC1;(2)求二面角B-EF-C的余弦值.(答案:)二、垂线法当已知条件中出现二面角中的一个半平面内一点到另一个半平面的垂线时(或虽未给出这样的垂线,但由已知条件能够作出这样的垂线),可依据三垂线定理或其逆定理作出它的平面角,然后再求解。例4.(2011湖南理改编)如图5,在圆锥中,已知,圆的直径,是圆弧上的点,二面角的平面角为(1)求二面角的余弦值(2)求二面角的余弦值(3)求二面角的余弦值答案:(1);(2);(3);点评:利用三垂线定理或其逆定理作二
13、面角的关键是找垂线,即过其中一个半平面内的一点作与另一个半平面垂直的直线。Ex4. 如图,四棱锥中,底面为矩形,底面,点是棱的中点.(1)证明:平面;(2)若,求二面角的平面角的大小.(答案: ) ABCA1B1C1M图28Ex5.如图28,在正三棱柱中,AB=2,AA1=2,M为AA1的中点,求平面C1MB与平面ABC所成二面角(锐角)的大小。(答案:450)三、垂面法在求解二面角的问题中,若能找到或者作出棱的垂面,则垂面与两个半平面的交线所成的角即为二面角的平面角。例5. 如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA平面ABCD,点 E在线段PC上,PC平面BDE。(1)证明
14、:BD平面PAC;(2)若PH=1,AD=2,求二面角B-PC-A的正切值;(答案:3)点评:这里由已知条件很容易找到二面角的棱EC的垂面,故运用垂面法可顺利找出二面角的平面角。Ex6.(2007 山东理)如图,在直四棱柱中,已知,.(1)设是的中点,求证: 平面;(2)求二面角的余弦值.(答案)_D_C_B_A_D_1_C_1_B_1_A_1HEx7.(2012 汕头二模)如图,已知是底面边长为1的正四棱柱,(1)证明:平面平面(2)当二面角的平面角为120°时,求四棱锥的体积。(1/3)Ex8. 如图,三棱锥中,底面,为的中点,点在上,且.(1)求证:平面平面; (2)求平面与平
15、面所成的二面角的平面角(锐角)的余弦值.立体几何向量求值公式ABDC1.导面直线与直线所成的角2.直线与平面所成的角AO3.点到平面的距离(图中)4. 二面角的平面角A(锐角)或A(钝角)立体几何向量问题先证明后建系;求点、线、面(法向量)的坐标;含参数问题的处理.例1.如图,棱长均为的正三棱柱中,为中点.(1)求证:面;(2)求直线与平面的夹角的余弦值;()(3)求到面的距离()练习1.底面是菱形的四棱锥中,.(1)证明:平面.(2)在上找一点,使得/平面.(3)求二面角的平面角的余弦值. ()例2(2013江西)如图,四棱锥中,平面,为的中点,为的中点,连接并延长交于.(1)求证:;(2)求平面与平面的夹角的余弦值.()练习2.如图,三棱锥中,底面,为的中点,点在上,且.(1)求证:平面平面;(2)求平面与平面所成的二面角的平面角(锐角)的余弦值.( )_D_C_B_A_D_1_C_1_B_1_A_1例3.(2012 汕头二模)如图,已知是底面边长为1的正四棱柱,(1)证明:平面平面(2)当二面角的平面角为120°时,求四棱锥的体积.(1/3)练习3.(2013揭阳一模)如图,在等腰梯形CDEF中,CB、DA是梯形的高,,现将梯形沿CB、DA折起,使且,得一简单组合体如图示,已知分别为的中点(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 实战网络管理员考试试题及答案
- 软件设计师考试动手实践训练方法试题及答案
- 激励幼儿积极参与的活动设计计划
- 跨学科整合品德教育的路径计划
- 云计算与网络安全试题及答案
- 2024年上海海事大学辅导员考试真题
- 2024年江苏省医疗保障局下属事业单位真题
- 2024年绍兴市科学技术局招聘笔试真题
- 2024年内江师范学院选调工作人员笔试真题
- 行政法学历年试题及答案回顾
- 2024年数字化管理试题及答案
- 食品安全自查、从业人员健康管理、进货查验记录、食品安全事故处置保证食品安全的规章制度
- 温州护士面试试题及答案
- 《基于单片机的家用万能遥控器设计5800字(论文)》
- TCHSA 090-2024 年轻恒牙根尖诱导成形术操作专家共识
- 2025年农业合作社廉政风险点及防控措施
- 20以内乘法除法口算练习卷1000道可打印
- 《城市轨道交通行车组织》教案 项目四任务二 ATC设备故障时的列车运行组织
- 生化检验项目选择与临床
- 民警心理减压培训
- 2025年蚌埠市阳光电力维修 工程有限责任公司招聘笔试参考题库附带答案详解
评论
0/150
提交评论