版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上裂项相消求和法在数列和不等式中的应用数列与不等式是高中数学重点内容,是高考必考内容,数列与不等式的结合成为高考的命题热点,具有难度大、灵活性强的特点,对学生的数学思维品质提出了较高的要求,尤其是以递推数列为载体的不等式证明,可以从较高的层次上考察学生运用数学思想方法进行代数推证的理性思维能力。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析特征,抓住规律进行适当地放缩。下面就几道例题剖析如何用裂项相消求和法证明数列不等式。基本问题求和:(1)(2)。 (3)。因为,(4).已知,求前项的和.解析:,类型一、通项(是常数)例1、求证: . 思路一、若
2、,;思路二、若,;思路三、,点评:由于,可见通项放缩越接近,和就越接近。例2、已知,证明:思路、n2时,易得,故点评:当分母是关于的二次表达式,通过因式分解(或需要放缩)等差数列相邻两项的积。例3、已知,前项和为,求证 证明:, 点评:此题虽然分母不是二次式,但可以看成是相邻两项的积,仍然可以裂成两项之差。例4、求证:思路、令,(),故, 点评:由于,则,故。也可以得证。通过以上例题可以看出,当分母可以放缩为一个等差数列相邻两项(若分母为关于高次)的积,便可以裂成两项的差。除以上例题用到放缩技巧以外,还有:若为等差数列,公差为,则, ,等。类型二、通项(是常数)例5、求证:思路、首先,所以容易
3、经过裂项得 再证而由均值不等式,知道这是显然成立的,所以。例6、数列,的前项和为,求证:思路、由于所以,。例7、已知,求证:。证明: 。所以通过以上例题不难得到,如果分母可以放缩为两个根式之和,采用分母有理化便可以得到两个根式之差。除以上例题用到放缩技巧以外,还有:, , .等。类型三、通项(是常数)例8、已知已知令是数列的前n项和,证明:证明:。例9、,求证 当时, + 当时,故+例10、已知,求证:。证明:=,故。例11、已知求证 思路一:当时 故 思路二:例12、已知设,数列的前n项和为Tn .求证:思路:,由得所以,从而即 例13、求证+ 思路一、当时,+思路二、当时,如果分母是含有幂
4、的表达式一般式放缩为一个等比数列,但分母若可放缩成两项式子的积,也可以裂成两项之差。除以上例题用到放缩技巧以外,还有:, ,.类型4、含阶乘的通项例14、已知,求证:。思路、由于故 。点评:含与阶乘有关的通项一般可以拆成两项之差,还有, 等。类型5、利用二项式定理例15、求证:当,且,都有 证:+ = + =例16、设(且),当时,试证明:4.思路、设,则,当时,设 则。从而,总有类型6、利用递推关系式例17、已知,求证 思路: 例18、已知, 求证:。思路、由于 , ,, , 又,。例19、若,其中,证明:思路、由于,由(1),则,而,则,又 ,而,且,故 ,因此,从而这两题中告诉了数列的递推关系式,但没有直接求出数列的通项,而是巧妙的裂成(或放缩)两项之差的形式,以达到求和的目的。类型7、构造法例20、求证:先运用分式放缩法证明出通项: 下面介绍几种方法证明 方法一因为,所以,所以有 方法二,因为,所以 令,可以得到,所以 点评:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 近三年安徽中考数学真题试题及答案2025
- VSphere-6-管理与运维专题课件
- 轻钢龙骨隔墙方案八局-中国建设银行济南分行泺源大街办公楼装修改造项目
- 这是一封真实的辞职信
- 湖北省武汉市武昌区2025年八年级上学期期末考试物理试题附答案
- 2026年琼海海中免免税品有限公司招聘备考题库及参考答案详解1套
- 会议文件处理与归档制度
- 2026年乡镇卫健助理员岗位知识面试模拟题及答案
- 2026年环境水力学期末考试试题及答案
- 2026年驾驶员安全驾驶态度与习惯自测题含答案
- 2026年共青团中央所属单位招聘66人备考题库及答案详解一套
- 人民警察法培训课件
- 小糖人课件:糖尿病患者儿童糖尿病的护理
- 小猫绝育协议书
- 人工搬运培训课件
- 建筑施工异常工况安全处置指南
- 2025年榆林神木市信息产业发展集团招聘备考题库(35人)及答案详解(新)
- 2025年公务员时事政治热点试题解析+答案
- 免疫联合治疗的生物样本库建设
- 项目管理沟通矩阵及问题跟进器
- 交通运输企业人力资源管理中存在的问题及对策
评论
0/150
提交评论