




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、无限长弦的一般强迫振动定解问题解三维空间的自由振动的波动方程定解问题在球坐标变换 (r=at)无界三维空间自由振动的泊松公式 二维空间的自由振动的波动方程定解问题傅立叶变换 基本性质线性性质 微分性质 若则 拉普拉斯变换 基本性质 三个格林公式高斯公式:设空间区域V是由分片光滑的闭曲面S所围成,函数P,Q,R在V上具有一阶连续偏导数,则:或第一格林公式:设u(x,y,z),V(x,y,z)在SSV上有一阶连续偏导数,它们在V中有二阶偏导,则:第二格林公式:设u(x,y,z),V(x,y,z)在SSV上有一阶连续偏导数,它们在V中有二阶偏导,则:第三格林公式设M0,M是V中的点,v(M)=1/r
2、MM0, u(x,y,z)满足第一格林公式条件,则有: 定理1:泊松方程洛平问题 的解为: 推论1:拉氏方程洛平问题 的解为: 调和函数1、定义:如果函数u(x,y,z)满足:(1) 在具有二阶连续偏导数;(2) 称u为V上的调和函数。 2、调和函数的性质。 性质1 设 u(x,y,z) 是区域 V 上的调和函数,则有 推论2:拉氏牛曼问题(牛曼问题解不稳定没有得到公式解)有解的充分必要条件是:性质2 设u(x,y,z) 是区域V上的调和函数,则有 :性质3 : 设u(x,y,z)是区域V 上的调和函数,则在球心的值等于它在球面上的算术平均值,即: 其中SR是以M0为球心,R为半径的球面 三维
3、空间中狄氏问题格林函数 泊松方程狄氏问题为:其中:如果G(M,M0)满足: 则可得泊松方程狄氏解定理定理:泊松方程狄氏解为: 其中G(M,M0)满足: 推论:拉氏方程狄氏解为:平面中的三个格林公式首先证明一个定理: 设闭区域D由分段光滑的曲线L围成,且f(x,y)在D上有二阶连续偏导数,n为曲线的外法线方向,则:(1) 第一格林公式设闭区域D由分段光滑的曲线L围成,且u(x,y),v(x,y)在D上有二阶连续偏导数,n为曲线的外法线方向。 (2) 第二格林公式(3) 第三格林公式:设闭区域D由分段光滑的曲线L围成,且u(x,y)在D上有二阶连续偏导数,n为曲线的外法线方向,令: 定理:平面泊松
4、方程洛平问题 的解为:推论:平面拉氏方程洛平问题 的解为:定理:平面泊松方程狄氏问题的解为: 推论:平面拉氏方程狄氏解为:平面狄氏格林函数 特殊区域上狄氏问题格林函数1球形域内狄氏问题格林函数 格林函数为: 其中: 球域内狄式问题的解 其中:球域上狄氏问题的解的球坐标表达式所以:2上半空间狄氏问题的Green函数 所以上半空间泊松方程狄氏问题的解为: 上半空间拉氏方程狄氏问题的解为: 3上半平面狄氏问题的Green函数 ,上半平面上泊松方程狄氏解上半平面上拉氏方程狄氏解4圆域上泊松与拉氏方程狄氏解的GREEN函数 ,圆域上泊松与拉氏方程狄氏解5第一象限上狄氏问题的Green函数三种典型方程的基
5、本解问题1 泊松方程的基本解方程的解称为泊松方程的基本解。三维空间泊松方程的基本解平面泊松方程基本解为: 特解应该为基本解与函数f的卷积2热传导方程柯西问题基本解定解问题:的解,称为定解问题的基本解。基本解为: 定解为基本解与初始函数的卷积3热传导方程混合问题基本解定解问题的解称为定解问题的基本解定解与基本解的关系为4波动方程柯西问题基本解定解问题的解称为定解问题的基本解基本解为:定解与基本解的关系为:贝塞尔函数 正、负n阶第一类贝塞尔函数 第二类Bessel函数Bessel函数的母函数当x为实数时可得,Bessel函数的积分表达式 当n为整数时:贝塞尔函数的递推公式 n 阶整数阶贝塞尔函数有: 贝塞尔函数的正交性 贝塞尔函数系 定义:定积分:称为贝塞尔函数的模。 2、贝塞尔级数展开定理:设在区间0,R上至多有有限个跳跃间断点,则f(x)在(0,R)连续点处的贝塞尔级数收敛与该点的函数值,在间断点处收敛于该点左右极限的平均值 其中 勒让德方程 考虑球域内拉氏方程定解问题在球坐标系下勒让德方程 令, 取m=0时得 勒让德多项式当n为正偶数时当n为正奇数时n次第一类勒让德多项式 勒让德多项式的罗得利克公式 勒让德多项式的积分表达式 勒让德多项式的母函数 勒让德多项式的递推公式(重点) (n
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 臂神经痛的临床护理
- 2025酒店管理委托合同
- 胃反应性淋巴增生的临床护理
- 2025企业委托代理经营合同范本
- 2025指定赠与合同范文
- 生理学期末测试卷及答案
- 上栗县六年级试卷及答案
- 山东英语八下期末试卷及答案
- MRPⅡ原理专题培训讲义
- 石油开采与能源安全战略考核试卷
- 2024年中国光大银行招聘考试真题
- 2025-2030中国油漆和涂料消光剂行业市场发展趋势与前景展望战略研究报告
- 2025年储能项目可行性分析报告
- 2025年山西焦煤集团国际发展股份有限公司招聘笔试参考题库附带答案详解
- 水泥装卸合同协议
- 金华兰溪市卫健系统普通高校招聘医学类笔试真题2024
- 2025年浙江省杭州市萧山区中考一模数学模拟试卷(含详解)
- 《食品生产经营企业落实食品安全主体责任监督管理规定》解读与培训
- 道路普通货运企业安全生产达标考评方法和考评实施细则
- DB15T 3516-2024野生动物救护站建设规范
- 火灾自动报警系统设计规范完整版2025年
评论
0/150
提交评论