磁磁场计算题_第1页
磁磁场计算题_第2页
磁磁场计算题_第3页
磁磁场计算题_第4页
磁磁场计算题_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1一足够长的矩形区域abcd内充满磁感应强度为B、方向垂直纸面向里的匀强磁场,矩形区域的左边界ad宽为L,现从ad中点O垂直于磁场射入一带电粒子,速度大小为方向与ad边夹角为30°,如图4所示。已知粒子的电荷量为q,质量为m(重力不计)。图4(1)若粒子带负电,且恰能从d点射出磁场,求的大小;(2)若粒子带正电,使粒子能从ab边射出磁场,求的取值范围以及此范围内粒子在磁场中运动时间t的范围。图5O3O2O160°1、解析:此例包括单直线边界进入型、双直线边界中的最值相切两种类型。(1)为单直线边界进入型,由图5可知:O1为轨道圆心,由于对称性,速度的偏转角160°

2、,故轨道半径据,则(2)当最大时,轨道与cd相切:,得R1=L则当最小时,轨道与ab相切:,得则带电粒子从ab边射出磁场,当速度为时,运动时间最短。速度为时,运动时间最长粒子运动时间t的范围2、如图24所示,空间分布着有理想边界的匀强电场和匀强磁场。左侧匀强电场的场强大小为E、方向水平向右,电场宽度为L;中间区域匀强磁场的磁感应强度大小为B,方向垂直纸面向里。一个质量为m、电量为q、不计重力的带正电的粒子从电场的左边缘的O点由静止开始运动,穿过中间磁场区域进入右侧磁场区域后,又回到O点,然后重复上述运动过程。求:BBELdO(1)中间磁场区域的宽度d; (2)带电粒子从O点开始运动到第一次回到

3、O点所用时间t。OO3O1O26002、解析:(1)带电粒子在电场中加速,由动能定理,可得: 带电粒子在磁场中偏转,由牛顿第二定律,可得:由以上两式,可得。可见在两磁场区粒子运动半径相同,如图25所示,三段圆弧的圆心组成的三角形O1O2O3是等边三角形,其边长为2R。所以中间磁场区域的宽度为(2)在电场中,在中间磁场中运动时间在右侧磁场中运动时间,则粒子第一次回到O点的所用时间为3如图5,一个质量为,带电量的粒子在BC边上的M点以速度垂直于BC边飞入正三角形ABC。为了使该粒子能在AC边上的N点(CMCN)垂真于AC边飞出ABC,可在适当的位置加一个垂直于纸面向里,磁感应强度为B的匀强磁场。若

4、此磁场仅分布在一个也是正三角形的区域内,且不计粒子的重力。试求:(1)粒子在磁场里运动的轨道半径及周期T;(2)该粒子在磁场里运动的时间t;(3)该正三角形区域磁场的最小边长;3解析:(1)由和,得:    ,     (2)由题意可知,粒子刚进入磁场时应该先向左偏转,不可能直接在磁场中由M点作圆周运动到N点,当粒子刚进入磁场和刚离开磁场时,其速度方向应该沿着轨迹的切线方向并垂直于半径,如图6作出圆O,粒子的运动轨迹为弧GDEF,圆弧在点与初速度方向相切,在F点与出射速度相切。画出三角形,其与圆弧在D、E两点相切,并与圆交于

5、F、G两点,此为符合题意的最小磁场区域。由数学知识可知FOG600所以粒子偏转的圆心角为3000,运动的时间   (3)连接并延长与交与点,由图可知,点评:这道题中粒子运动轨迹和磁场边界临界点的确定比较困难,必须将射入速度与从AC边射出速度的反向延长线相交后根据运动半径已知的特点,结合几何知识才能确定。另外,在计算最小边长时一定要注意圆周运动的轨迹并不是三角形磁场的内切圆MNO,LAO图3P4、圆心为O、半径为r的圆形区域中有一个磁感强度为B、方向为垂直于纸面向里的匀强磁场,与区域边缘的最短距离为L的O处有一竖直放置的荧屏MN,今有一质量为m的电子以速率v从左侧沿方向垂直射

6、入磁场,越出磁场后打在荧光屏上之P点,如图3所示,求OP的长度和电子通过磁场所用的时间。5、核聚变反应需要几百万度以上的高温,为把高温条件下高速运动的离子约束在小范围内(否则不可能发生核反应),通常采用磁约束的方法(托卡马克装置)。如图7所示,环状匀强磁场围成中空区域,中空区域中的带电粒子只要速度不是很大,都不会穿出磁场的外边缘而被约束在该区域内。设环状磁场的内半径为R1=0.5m,外半径R2=1.0m,磁场的磁感强度B=1.0T,若被束缚带电粒子的荷质比为q/m=4×C/,中空区域内带电粒子具有各个方向的速度。试计算图7(1)粒子沿环状的半径方向射入磁场,不能穿越磁场的最大速度。

7、(2)所有粒子不能穿越磁场的最大速度。6、如图所示,直角坐标系Oxy位于竖直平面内,x轴与绝缘的水平面重合,在y轴右方有垂直纸面向里的匀强磁场和竖直向上的匀强电场质量为m2=7×10-3kg的不带电小物块静止在原点O,A点距O点l=0.045m,质量m1=1×10-3kg的带电小物块以初速度v0=0.5m/s从A点水平向右运动,在O点与m2发生正碰并把部分电量转移到m2上,碰撞后m2的速度为0.1m/s,此后不再考虑m1、m2间的库仑力已知电场强度E=40N/C,小物块m1与水平面的动摩擦因数为=0.1,取g=10m/s2,求:(1)碰后m1的速度;(2)若碰后m2做匀速圆

8、周运动且恰好通过P点,OP与x轴的夹角=30°,OP长为lop=0.4m,求磁感应强度B的大小;xyPOAm1m2v0lBE(3)其它条件不变,若改变磁场磁感应强度的大小为B/使m2离开第一象限后落地时能与m1再次相碰,求B/的大小?图5O3O2O160°1、解析:此例包括单直线边界进入型、双直线边界中的最值相切两种类型。(1)为单直线边界进入型,由图5可知:O1为轨道圆心,由于对称性,速度的偏转角160°,故轨道半径据,则(2)当最大时,轨道与cd相切:OO3O1O2600,得R1=L则当最小时,轨道与ab相切:,得则带电粒子从ab边射出磁场,当速度为时,运动时

9、间最短。速度为时,运动时间最长粒子运动时间t的范围2、解析:(1)带电粒子在电场中加速,由动能定理,可得: 带电粒子在磁场中偏转,由牛顿第二定律,可得:由以上两式,可得。可见在两磁场区粒子运动半径相同,如图25所示,三段圆弧的圆心组成的三角形O1O2O3是等边三角形,其边长为2R。所以中间磁场区域的宽度为(2)在电场中,在中间磁场中运动时间在右侧磁场中运动时间,则粒子第一次回到O点的所用时间为3解析:(1)由和,得:    ,     (2)由题意可知,粒子刚进入磁场时应该先向左偏转,不可能直接在磁场中由M点作圆周运动到N点

10、,当粒子刚进入磁场和刚离开磁场时,其速度方向应该沿着轨迹的切线方向并垂直于半径,如图6作出圆O,粒子的运动轨迹为弧GDEF,圆弧在点与初速度方向相切,在F点与出射速度相切。画出三角形,其与圆弧在D、E两点相切,并与圆交于F、G两点,此为符合题意的最小磁场区域。由数学知识可知FOG600所以粒子偏转的圆心角为3000,运动的时间   (3)连接并延长与交与点,由图可知,点评:这道题中粒子运动轨迹和磁场边界临界点的确定比较困难,必须将射入速度与从AC边射出速度的反向延长线相交后根据运动半径已知的特点,结合几何知识才能确定。另外,在计算最小边长时一定要注意圆周运动的轨迹并不是三角

11、形磁场的内切圆MNO,LAO图4R/2/2BPO/4解析 :电子所受重力不计。它在磁场中做匀速圆周运动,圆心为O,半径为R。圆弧段轨迹AB所对的圆心角为,电子越出磁场后做速率仍为v的匀速直线运动, 如图4所示,连结OB,OAOOBO,又OAOA,故OBOB,由于原有BPOB,可见O、B、P在同一直线上,且OOP=AOB=,在直角三角形P中,OP=(L+r)tan,而,,所以求得R后就可以求出OP了,电子经过磁场的时间可用t=来求得。 由得R=,图8r1,5、解析:(1)要粒子沿环状的半径方向射入磁场,不能穿越磁场,则粒子的临界轨迹必须要与外圆相切,轨迹如图8所示。图9OO2由图中知,解得由得所以粒子沿环状的半径方向射入磁场,不能穿越磁场的最大速度为。(2)当粒子以V2的速度沿与内圆相切方向射入磁场且轨道与外圆相切时,则以V1速度沿各方向射入磁场区的粒子都不能穿出磁场边界,如图9所示。由图中知由得所以所有粒子不能穿越磁场的最大速度6、解:(1)m1与m2碰前速度为v1,由动能定理(分)代入数据解得:m/s(分)设v2=0.1m/s,m1、m2正碰,由动量守恒有:(2分)xyPOAm1m2v0lBE2代入数据得:,水平向左(分)(2)m2恰好做匀速圆周运动,所以(分)得:q=1.75×10-3C(分)粒子受洛仑兹力提供向心力,设圆周的半径为R

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论