版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、皂角花分割和边缘检测算法MATLAB实现图像处理和计算机视觉领域研究的发展,图像分割和边缘检测的问题在近二十年中得到了广泛的关注和长足的发展,国内外很多研究人士提出了很多方法,在不同的领域取得了一定的成果。本实验针对一张皂角树的彩色图像,寻找一种准确率高的皂角花分割和边缘检测算法,并在MATLAB中得以。一、 实验步骤2.1 图像分割预处理步骤一、图像灰度化实验采集的图像是通过手机拍摄获取的RGB彩色图像,由于图像中的每个像素都具有三个不同的颜色分量,图像中会出现很多与识别无关的信息,为进一步对图像的处理研究,首先将彩色图像转换为灰度图像,这个过程称图像灰度化。如图2-1所示:图2-1 图像灰
2、度化步骤二、图像去噪图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像分割、边缘检测等图像处理工作。在这里使用中值滤波多图像中随机出现部分点进行处理。如图2-2所示:图2-2 图像去噪步骤三、图像二值化二值化处理利用图像中要得到的皂角花和绿叶之间灰度上的不同来得到一个阈值或范围,此处设阈值为0.61基本上把最开始的图像划为背景和对象物体。如图2-3所示:图2-3 图像二值化2.2 图像形态学处理步骤四、腐蚀膨胀这里主要是采用数学形态学中的腐蚀与膨胀操作,因为图像中的蓝天在二值化后的图像呈现出一些零散的白点。现通过先腐蚀后膨胀的操作去除这点亮点。对腐蚀和膨胀设定相应的阈
3、值。如图2-4所示:图2-4 腐蚀膨胀2.3 图像分割步骤五、区域生长法分割区域生长法利用图像像素间的相似性进行分割,调用regiongrow函数对图像进行处理。这里设置阈值为0.17。如图2-5所示: 图2-5 区域生长法步骤六、 Canny 算子边缘检测Canny的研究思想主要是把检测像素点转换为检测单位函数极大值,他指出一个好的边缘检测算子应有三个特性:检测性噪比高,边缘定位精度高,单边响应效果好。Canny算子基于Laplace滤波,采用两个阈值,对强边和弱边进行检测。从实验结果可以看出,相对其它边缘检测算子,Canny算子对像素变化更加敏感,能更好地捕捉图像中的微弱边缘。采用Cann
4、y算子检测皂角花边缘如图2-6所示:图2-6 Canny 算子二、 算法实现MATLAB的数字图像处理功能很强大,其自带的图像处理工具箱包括了经典图像处理的许多方面,如图像的集合操作、邻域和区域操作、图像变换、图像的恢复、增强和分割、线性滤波器和滤波器设计、图像分析和统计、色彩、集合及形态操作等方面。针对以上操作都可直接使用MATLAB提供的函数,简单快捷。3.1 读取图像原图像为1111.PNG,存放在本机D盘。I=imread('D:1111.PNG');subplot(2,2,1),imshow(I);axis on; %显示坐标3.2 图像预处理I1=rgb2gray(
5、I);subplot(3,3,1); imshow(I1); title('灰度图像'); %图像灰度化B = medfilt2(I1);subplot(3,3,2); imshow(B); title('图像去噪'); %图像去噪中值滤波I3=im2bw(B,0.61); subplot(3,3,3); imshow(I3); title('图像二值化'); %图像二值化3.3图像腐蚀膨胀se=strel('square',18);I4=imerode(B,se);subplot(3,3,4); imshow(I4); titl
6、e('腐蚀'); %图像腐蚀操作sv=strel('square',15);I5=imdilate(I4,sv);subplot(3,3,5); imshow(I5); title('膨胀'); %图像膨胀操作3.4图像分割首先编写m文件,实现生长区域算法,用户选择种子点,然后根据阈值进行区域生长。m文件:function J = regionGrow(I)if isinteger(I) I=im2double(I);endfigure,imshow(I),title('原始图像')M,N=size(I);y,x=getpts;
7、%获取区域生长点起始点x1=round(x); y1=round(y); seed=I(x1,y1); %将生长起始灰度值存在seed中J=zeros(M,N); J(x1,y1)=1; sum=seed; suit=1; count=1; threshold=0.16;while count>0s=0;count=0; for i=1:M for j=1:N if J(i,j)=1 if (i-1)>0 & (i+1)<(M+1) & (j-1)>0 & (j+1)<(N+1) for u= -1:1 % 判断点周围八点是否符合阈值条件
8、for v= -1:1 if J(i+u,j+v)=0 & abs(I(i+u,j+v)-seed)<=threshold& 1/(1+1/15*abs(I(i+u,j+v)-seed)>0.8 J(i+u,j+v)=1; % 判断是否为尚未标记,并且符合阈值条件的点 count=count+1; s=s+I(i+u,j+v); end end end end end end end suit=suit+count; sum=sum+s; seed=sum/suit; end最后,将我们处理后的图像进行区域生长。f = regionGrow(I5); %区域生长分割
9、imshow(f); title('regionGrow');3.5 Canny算子边缘检测k,t=edge(f,'canny');imshow(k); title('canny算子'); %Canny算子边缘检测三、 结论与讨论本次实验通过对皂角花图像预处理、形态学处理及分割等一系列操作,实现了皂角花的目标分割及边缘检测。数字图像目标分割与提取是数字图像处理和计算机视觉领域中一个备受关注的研究分支,也是图像处理领域的一个经典难题。经过近二十年的不断研究和探讨,数字图像目标分割与提取在不同领域取得了很大发展,但是目前还没有一个通用的算法或标准能够胜任所有不同的应用,该问题也没有形成一个通用的自身理论
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年浙江经济职业技术学院单招职业倾向性考试必刷测试卷及答案1套
- 2026年漯河职业技术学院单招职业技能测试题库新版
- 2026年山东旅游职业学院单招职业倾向性测试题库必考题
- 2026年保险职业学院单招职业适应性考试题库必考题
- 2026年昆明卫生职业学院单招职业技能测试题库及答案1套
- 2026年广西经贸职业技术学院单招职业倾向性测试题库附答案
- 2026年四川化工职业技术学院单招职业技能考试必刷测试卷新版
- 2026年郴州思科职业学院单招职业适应性考试题库必考题
- 2026年德阳农业科技职业学院单招职业倾向性测试必刷测试卷新版
- 2026年三亚城市职业学院单招职业倾向性考试题库新版
- 供水管道工岗位职业健康及安全技术规程
- 自动化生产线运行维护方案及记录表
- 高三试卷:辽宁省沈阳市郊联体2024-2025学年高三上学期11月期中化学+答案
- 2025年中国聚氨酯分散体行业市场分析及投资价值评估前景预测报告
- 2025年等保测评初级测评师考试题库及答案
- 电焊烟尘安全培训课件
- 乌鲁木齐冬季施工方案
- 消防工程消防水灭火系统施工方案
- 2025湖南张家界桑植县交通旅游建设投资集团有限公司招聘考试参考题库及答案解析
- 2025-2026学年人教版(2024)七年级地理第一学期第一章 地球 单元测试(含答案)
- 俄语对外一级考试题目及答案
评论
0/150
提交评论