版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、线性方程组的矩阵求解算法 摘要 线性方程组的矩阵求解算法,只需在约当消元法的基础上,再对方程组的增广矩阵的行最简形进行行(列)删除和增加行,交换行等运算即可得到方程组的解,并且这种方法既可求解有唯一解的方程组.因而算法简单,易于实现.关键词 线性方程组;解向量;解法;约当消元法1 矩阵求解算法设有线性方程组,其增广矩阵,算法的步骤如下:第一步:利用约当消元法,把增广矩阵化为行最简形,设行最简形为.若则方程组无解;否则设并执行以下步骤;第二步:删除中的所有零行和每一行第一个非零元素(这个非零元素一定是1)所在的列,得到矩阵并记录每行的第一个非零元所在的列标,放在一维数组中,如第行的第一个非零元在
2、第列,则;第三步:构造矩阵,其中 第四步:对矩阵中的行作交换运算:把中的第行(即从第行开始直到第一行)依次与其下一行交换,使之成为第行,交换运算结果后的矩阵记为,则中的前个维列向量即为方程组的一个基础解系,最后一列向量即为方程组的一个特解;第五步:写出方程组的通解.2 算法证明先证一个特殊情形,增广矩阵的行最简形矩阵的左上角为一阶的单位矩阵,即第行的第一个非零元的列标为,即,所以设为 则 由上述算法可得为 由于,故从得到时,中的行不需交换位置,即那么矩阵的增广矩阵的线性方程组为 令 , , 可以验证是方程组(1)所对应的齐次线性方程组的解,是方程组(1)的特解,又的后个分量构成的向量组,线性无
3、关,把它扩充成维向量组后也线性无关,所以线性无关,又因为,所以方程组(1)的基础解系中有个向量,因此即为方程组(1)的基础解系,特殊情形得证.对于行最简形矩阵为一般情形时,可以通过若干次列交换把它变形为上述特殊情形,但是,列交换将会导致最后结果中对应未知数的次序混乱,即在进行第列与第列的交换后,最后结果中与次序也就被交换了,因此,在这过程中,必须记住所进行的一切列交换,以便在最后结果中恢复,但若使用本矩阵求解算法,则可避免上述麻烦,为了叙述方便,还是只证一种特殊情形.设 即则 , , 现在证明的前个列向量是所对应的方程的基础解系,的最后一列是该方程组的特解,把矩阵的第2列依次与第3列,第4列,
4、第列交换,得到矩阵 设矩阵所对应的方程组的解向量为,所对应的方程组的解向量为,则有 即若是所对应的方程组的解向量,则是矩阵所对应的方程组的解向量,而由上述所证的特殊情形,所对应的方程组的基础解系和一个特解分别为 , , 由此可得矩阵所对应的方程组的基础解系和特解为 , , , , 而,即为的列向量组,这一情形得证若为起它任意情形,只要重复上上述证明过程,即可得到证明.3 举例 例 设有线性方程组求其通解. 解方程组的增广矩阵为 的行最简形矩阵为 划掉中的最后两个零行和每行的第一个非零元所在的第一列,第三列,第四列,得矩阵,并且 构造矩阵 由于,所以应把中第3行依次与其后的行交换,使之成为第4行
5、,然后因为,所以把中第2行依次与其后的行交换,使之成为第3行最后因,故第1行不需与任何行交换,这样变得到矩阵, 所以方程组的通解为 4.算法分析事实上,本算法是约当消元法的推广,因为若时,最简形矩阵的前列为阶单位矩阵,所以由得时,为矩阵,且为的最后一列所构造成的矩阵,由构造时,不断增加行,由得到时,不需交换行,即,因而方程组的解向量为,这也是约当消元法的结果也就是说约当消元法是本算法当时的特殊情形,由于本算法的所有加法和乘法都在把增广矩阵化为行最简形矩阵的着一过程中,所以有以下结论:1) 算法的计算量与约当消元法的计算量相等;2) 算法所需的存贮空间略多于约当消元法所需的存贮空间;3) 在求方
6、程组的通解时,其稳定性与精度和约当消元法的完全一致.另外,由于本算法从输入方程组到输出通解(或唯一解),中间的所有运算都是对矩阵进行的,所以算法简单,容易在计算机上实现,当然,由于本算法包含约当消元法,因而它除了有与约当消元法相同的缺点以外,它还有一个缺点:有时需要移动大量的元素,特别是当未知数的个数与方程的个数都很大时,元素的移动量可能更大.总之,本算法在约当消元法的基础上,不需增加乘法和加法运算,即可得到方程组的通解,因而本算法有一定的适用价值. 参考文献1徐士良 计算机常用算法M 北京: 清华大学出版社,1995.122同济大学 线性代数M 北京: 高等教育出版社, 2002.13邓建中等 计算方法M 西安: 西安交通大学出版社,2001.84刘仲奎
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年太阳能组件生产装备合作协议书
- 汽修三类安全生产岗位操作规范(各类工种及设备操作规程)
- 2026年病理职称考试题库及答案
- 运输企业物流配送路线优化管理制度
- 计算机教室管理制度与计算机机房消防管理规定
- 2026年度执业药师继续教育公需课考试题库及答案
- 美妆护肤精 华液调配技师(初级)考试试卷及答案
- 林下养鸡疫病防控专员岗位招聘考试试卷及答案
- 矿山除尘喷雾系统安装师岗位招聘考试试卷及答案
- 2025年无缝管热连轧机合作协议书
- 2026年春节后复工复产“开工第一课”安全生产培训课件
- Web3创作者经济演进研究
- 探秘黄河-中国的河流(第三课时)设计
- 2026年ESG专项知识考试题目
- 【生物 四川卷】2025年四川省高考招生统一考试真题生物试卷(真题+答案)
- 大黄酚在肾脏缺血再灌注损伤中的作用及其机制研究
- 2025春湘美版(2024)美术初中七年级下册第三单元 形色协奏曲《第2课 色彩的交响》教学设计
- 石油钻探设备吊装方案
- 职业技术学院校园环境改善施工组织设计方案
- 公司往来款合同模板
- 农村土地使用权转让协议书
评论
0/150
提交评论