版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、充分条件与必要条件充分条件与必要条件原命题原命题若若p则则q逆命题逆命题若若q则则p否命题否命题若若 p则则 q逆否命题逆否命题若若 q则则p互为逆否互为逆否互为逆否互为逆否互逆命题互逆命题互逆命题互逆命题互否命题互否命题互否命题互否命题复习复习:四种命题四种命题 (1)若 ,则 ; (2)若 ,则 ; (3)全等三角形的面积相等; (4)对角线互相垂直的四边形是菱形; 3、判断下列命题是真命题还是假命题、判断下列命题是真命题还是假命题: 1x12x22yxyx真真真真假假假假(1)若)若 ,则,则 ; 1 x12 x(3)全等三角形的面积相等;)全等三角形的面积相等; 真真真真x1 x21两
2、三角形全等两三角形全等 两三角形面积相等两三角形面积相等 若若p则则q为真为真 ,记作,记作 ;若若p则则q为假,记作为假,记作 qp qp 新授课新授课 1、充分条件与必要条件、充分条件与必要条件:一般地,如果已:一般地,如果已知知 那么就说,那么就说,p 是是q 的充分条件,同时称的充分条件,同时称q 是是p 的必要条件的必要条件qp 112 xx的的充充分分条条件件是是112 xx的的必必要要条条件件是是112 xx两三角形全等两三角形全等 两三角形面积相等两三角形面积相等两三角形全等是两三角形面积相等的充分条件两三角形全等是两三角形面积相等的充分条件两三角形面积相等是两三角形全等的必要
3、条件两三角形面积相等是两三角形全等的必要条件 2. 充分必要条件充分必要条件如果如果p q,且且q p,即如果即如果p是是q的充分条件,的充分条件, p又是又是q的必的必要条件,则称要条件,则称 p是是q的的充分必要条件充分必要条件,简称充要条件,记作简称充要条件,记作 qp 如果p q ,且q p , 那么称p是q的充分不必要条件 ; 如果 p q ,且 q p ,那么称p是q的既不充分也不必要条件. 3.判断充分、必要条件的基本步骤:判断充分、必要条件的基本步骤:(1)认清条件和结论;)认清条件和结论;(2)考察)考察 p q 和和 q p 的真假。的真假。典型例题典型例题 解解: (1)
4、 x=y是是x2=y2的充分不必要条件的充分不必要条件. x2=y2是是x=y的必要不充分条件的必要不充分条件. (2) p是是q的充分条件且是必要条件的充分条件且是必要条件. q是是p充分条件且是必要条件充分条件且是必要条件. 例例1 指出下列各组命题中,指出下列各组命题中,p是是q的什么条件,的什么条件,q是是p的什么条件:的什么条件:(1)22:;:yxqyxp (2)p:三角形的三条边相等;:三角形的三条边相等; q:三角形的三个角相等:三角形的三个角相等例例2填表填表典型例题典型例题pqp是是q的什么条的什么条件件q是是p的什么条件的什么条件y y是有理数是有理数 y y是实数是实数
5、5 x3 xba ba BxAx 且且BAx 0 ab0 a0)2)(1( yx21 yx且且m,n全全是奇数是奇数m+n是偶数是偶数充分不必要充分不必要必要不充分必要不充分充分不必要充分不必要必要不充分必要不充分充分不必要充分不必要必要不充分必要不充分必要不充分必要不充分充分不必要充分不必要充分充分必要必要必要必要充分充分充分不必要充分不必要必要不充分必要不充分必要不充分必要不充分充分不必要充分不必要典型例题典型例题 例3、请用“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”填空: (1)“(x-2)(x-3)=0”是“x=2”的条件. (2)“同位角相等”是“两直线平行”的条件. (3)“x=3”是“x2=9”的条件. (4)“四边形的对角线相等”是“四边形为平行四边形”的条件.充分不必要充分不必要必要不充分必要不充分充要充要既不充分也不必要既不充分也不必要课堂小结课堂小结 (3) 可先简化命题;可先简化命题; 否定一个命题只要举出一个反例即否定一个命题只要举出一个反例即可;可; 将命题转化为等价的逆否命题后再将命题转化为等价的逆否命题后再判断。判断。(1)充分条件、必要条件、充分必要条件的概念充分条件、必要条
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 粉状化妆品制造工安全生产能力考核试卷含答案
- 快件派送员安全培训水平考核试卷含答案
- 硫酸生产工岗前师带徒考核试卷含答案
- 冷拉丝工改进能力考核试卷含答案
- 侍酒师改进水平考核试卷含答案
- 树桩盆景工安全生产知识强化考核试卷含答案
- 金属材管拉拔工标准化测试考核试卷含答案
- 2025年云南城市建设职业学院马克思主义基本原理概论期末考试模拟题附答案
- 2024年西畴县事业单位联考招聘考试真题汇编附答案
- 2024年海南州特岗教师招聘考试真题题库附答案
- 2026年1月福建厦门市集美区后溪镇卫生院补充编外人员招聘16人笔试备考题库及答案解析
- 2025 年大学人工智能(AI 应用)期中测试卷
- 重庆市渝中区(2025年)辅警协警笔试笔试真题(附答案)
- 暴雪车辆行驶安全培训课件
- 2026年七台河职业学院单招综合素质笔试模拟试题带答案解析
- 2026年吉林司法警官职业学院单招职业技能考试备考试题带答案解析
- 2025内蒙古润蒙能源有限公司招聘22人考试题库附答案解析(夺冠)
- 2026年国家电网招聘之电网计算机考试题库500道有答案
- 年味课件教学课件
- 中国临床肿瘤学会(csco)胃癌诊疗指南2025
- 广东省广州市2025年上学期八年级数学期末考试试卷附答案
评论
0/150
提交评论