




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2214Article物理化学学报(WuliHuaxueXuebao)ActaPhys.-Chim.Sin.2012,28(9),2214-2220doi:10.3866/PKU.WHXB201206122S网状多级孔结构氧化铁的制备、合成机理及其光催化性质范海滨张东凤*郭林*(北京航空航天大学化学与环境学院,北京100191)摘要:以九水合硝酸铁为原料,利用改进的聚合诱导胶体聚集(PICA)的方法制备出三维网络状多级孔结构氧化铁(HPH).此结构的制备关键是在合成过程中尿素和甲醛聚合生成脲醛树脂(UF).脲醛树脂一方面在铁的羟基氧化物生长过程中与之杂化形成杂化产物Fe-UF,另一方面则进一步
2、聚合,形成脲醛树脂微球(UFM).脲醛树脂微球作为模板诱导杂化产物Fe-UF在其表面的聚集.微球与微球之间则由于表面存在的脲醛树脂间的聚合会相互交联形成网络状结构.经过煅烧处理后,脲醛树脂及脲醛树脂微球的分解导致不同尺寸孔结构的生成.光催化研究结果表明,产物对罗丹明B的降解效率是商用纳米氧化铁的4倍.关键词:-Fe2O3;多级孔结构;聚合诱导胶体聚集法;光催化降解O648中图分类号:Fabrication,FormationMechanismandthePhotocatalyticPropertiesofHierarchicalPorousHematiteNetworksFANHai-BinZ
3、HANGDong-Feng*GUOLin*(SchoolofChemistryandEnvironment,BeihangUniversity,Beijing100191,P.R.China)Abstract:Hierarchicalporoushematite(HPH)networkstructuresweresuccessfullyconstructedusinganimprovedpolymerizationinducedcolloidaggregationprocesswithFe(NO3)39H2Oastherawmaterial.Thepolymerizationbetweenur
4、eaandformaldehydeintourea-formaldehyde(UF)resinisthekeyfactorforthisconstruction.TheUFresinsappeartobeadvantageousintworespects:theUFoligomerhybridswithferrichydroxide(Fe-UF)andUFpolymerformedmicrocapsules(UFM)actedastemplatestoinducetheaggregationofFe-UFhybridsintomesoporousspheres.Thefurthercrossl
5、inkreactionsamongthehybridspheresgeneratethenetworkstructure.Aftercalcination,thedecompositionoftheUFresinandtheUFMproducesnanoporesinthenanorodsubunitsandmacroporesinthenetworkstructure,respectively.ThephotodegradationactivityoftheuniquestructuredHPHisfourtimesthatofthecommercialhematitenanoparticl
6、eswithrhodamineB(RhB)aspollutant.KeyWords:-Fe2O3;Hierarchicalporousstructure;Polymerizationinducedcolloidaggregationmethod;Photodegradation1IntroductionHierarchicalporousmaterials(HPM),withinterconnectedporesofmultiplelengthscalesasthestructurecharacter,haveattractedspecialresearchinterest.Thecombin
7、edadvantagesofthelargespecificsurfaceareaofmesoporousmaterialsandthehighefficiencyofmasstransportofmacroporousones1-4makethehierarchicalporousmaterialsaspromisingcandi-datesespeciallyinthefieldsrelatedtothediffusion-limitedReceived:May2,2012;Revised:June11,2012;PublishedonWeb:June12,2012.Correspondi
8、ngauthors.ZHANGDong-Feng,Email:dfzhang;Tel:+86-10-82338492.GUOLin,Email:guolin;Tel:+86-10-82338162.TheprojectwassupportedbytheNationalKeyBasicResearchProgramofChina(973)(2010CB934700),NationalNaturalScienceFoundationofChina(21173015),andFundamentalResearchFundsfortheCentralUniversities,China(YWF-11-
9、03-Q-085).国家重点基础研究发展规划项目(973)(2010CB934700),国家自然科学基金(21173015)及中央高校基本科研基金(YWF-11-03-Q-085)资助EditorialofficeofActaPhysico-ChimicaSinicaNo.9FANHai-Binetal.:Fabrication,FormationMechanismandthePhotocatalyticPropertiesofHPHNetworks2215processsuchascatalysis,5-7adsorption/separation,8-11solarcells,12supp
10、orts,13-15cathodeandanodematerialsforlithiumionbattery16,17andsoon.Forexample,hierarchicalporousstructuresexhibitenhancedcatalysisandadsorptionactivitieswiththeincreasedexposedactivesitesandtheimprovedmasstransferability.Thesuppressedrecombinationofphotogenerat-edelectronsoriginatedfrommesoporesandt
11、heenhancedlightabsorptionandtheimprovedelectrolytediffusionefficiencyowingtothemacroporesendowHPMwithgreatapplicationpotentialsinsolarcells.12Theinterconnectedporesresultinshorterdiffusionlength,higherelectricalconductivity,andmoreactivesitesforcharge-transferreactions,whichmakeHPMaspromisingcandida
12、tesforbatterymaterials.18Further-more,thehierarchicalporousstructurecouldalsobeeasytobedopedwithhomogeneousorselectiveactivesites,19whichwillextendtheapplicationofthecorrespondingmaterials.Template-basedprocessesdemonstratehighefficiencyfortheconstructionofporousstructures.Mesoporousproductsarealway
13、sachievedbyusingthesurfactantassofttemplate20-27ortheobtainedmesoporousmaterialsashardtemplate;28,29whilethelatexspheres,30-33suchaspolystyrene(PS),poly(methylmethacrylate)(PMMA)orothermaterialswithcertainstruc-tures,34-36areusuallyemployedashardtemplateforthecon-structionofmacroporousstructures.Sin
14、cetheporesizecanbefeasiblytunedbychoosingtemplatewithdifferentstructures,thebi-templatemethodbecomestheprimarychoiceforthepro-ductionofhierarchicalporousstructures.Forexample,Davisetal.34synthesizedsilicafiberswith0.5-m-widechannelsen-closedinwallsofmesoporousMCM-41byusingbacterialsu-perstructurethr
15、eadashardtemplateandcetyltrimethylammo-niumbromide(CTAB)assofttemplate.Intheco-presenceofpolystyrenelatexspheres,surfactants(triblockcopolymers)andcosurfactants(butanolorpentanol),Senetal.37preparedor-deredporoussilicamaterialssimultaneouslypossessingmacro-pores(200-800nm),mesopores(8.2nm),andmicrop
16、ores(2nm).Shietal.38fabricatedhierarchicalporousSiCwithca230nmmacroporesandca4.7nmmesoporesbyusingPSashard-templateandPluronicF127assoft-template.WiththeusingofSiO2ashardtemplateandF127assofttemplate,monolithiccarbonsieveswithca230nmmacroporesandca10nmmeso-poreswereobtained.39HierarchicalporousAl2O3
17、withca320nmmacroporesaswellashexagonallypackedmesoporeswasalsoobtainedbyusingPSandPluronicP123ashardandsofttemplates,respectively.40Generally,thisstrategyinvolvesatime-consumingmulti-stepprocedure:first,thepreparationoftheperiodicthree-di-mensionalarraysofhardtemplate;second,theinfiltrationofthemixe
18、dsolutioncontainingtheinorganicprecursorandsofttemplateintothevoidsofthosearrays;third,thehydrolysisoftheinorganicprecursorandtheremovaloftheexcessivesolu-tionbyvacuumfiltration;fourth,theremovalofthehardtem-platethroughcalcinationorextraction.Forthesuccessfulcon-struction,thereareseveralotherconsid
19、erations,suchasthecompatibilitybetweensolventandthehardtemplatearrays,41theprecisecontrolofthehydrolysisrateoftheprecursorfortheefficientinorganic-organicco-assembly,andthestabilityoftheskeletonaftertheinfiltration.41,42Forthebettercontrolofthehydrolysisrate,metalalkoxidesareusuallyemployedastheinor
20、ganicprecursor,whichisexpensiveanddifficulttopre-pare.Theserequirementslimittheprogressmainlyfocusedonsilica,titania,alumina,andtheir-basedcompounds.Transition-metaloxidesareexpectedtohavegreatapplicationpotentialsinvariousfields,suchasgassensors,batterymaterials,absor-bent,andcatalyst.However,there
21、arefewreports6,8,43,44onthefabricationofhierarchicalporoustransition-metaloxidesow-ingtothelackofafacialmethod.Recently,apolymerizationinducedcolloidaggregation(PICA)strategywasdevelopedforthefabricationofhierarchi-calporousmaterials.45,46Inthisprocedure,thecolloidofthetar-getmaterial(gottenbyhydrol
22、ysisprocessorbysuspendingthepre-preparednanoparticlesinsolution)firstformedinorganic-organichybridwithmonomers/oligomerandthepolymeriza-tionofthemonomer/oligomerinducedtheaggregationofthecolloid.Theremovalofthepolymerproducedhierarchicalpo-rousinorganicmaterials.Theporesizecanbeeasilytunedbychoosing
23、differentmonomersorintroducingporogens.47,48Obviously,thePICAstrategyismorecontrollableincompar-isonwiththebi-templatemethod,10,45,48whichmakesitapoten-tialmethodforthesynthesisofporoustransitionmetaloxides.Jiangetal.10gaveaccesstoporoustitaniamicrospheresbytak-ingusageofthepolymerizationbetweenurea
24、andformalde-hyde.Shietal.45gotthezeolitemicrosphereswithhierarchicalporousstructurethroughanimprovedPICAstrategywiththeuseofurea-formaldehyde(UF)resin.Maoetal.46reportedthefabricationofbimodalmesoporoushematitemicrosphereswiththeaidofpolymerizationofacrylamide-directedaggregation.However,theobtained
25、productsalwaysexhibitedasseparatedmicro-spheres.Thearrayednetworkstructures,expectedtohavemorepotentialapplication,havenotbeenreportedyet.Herein,togethematitewithhierarchicalporousnetworkstructures,animprovedPICAprocesswasproposed,whichfi-nallyverifiedtobeasuccessfulroute.Itwasbelievedthattheenhance
26、dpolymerizationextentbyadoptinglowerpHandlon-geragingtimeisresponsiblefortheformationofthenetworkstructure.Sincethissynthesisrouteishard-templatefree,con-venient,lowcostandtime-saving,itisexpectedtoprovideanewideaforthesynthesisofhierarchicalporousnetworkstruc-turesofothertransition-metaloxides.2Exp
27、erimental2.1MaterialsAllthechemicalswereusedasreceivedwithoutfurtherpuri-fication.Fe(NO3)39H2O(AR,98.5%)andurea(AR,99.0%)werepurchasedfromXilongChemicalIndustryIncorporatedCo.Ltd.NH3H2O(25%-28%,massfraction)andethanol(AR,99.7%)werepurchasedfromBeijingChemicalWorks.2216ActaPhys.-Chim.Sin.2012Vol.28Fo
28、rmaldehydesolution(37.0%-40.0%,massfraction)waspur-chasedfromBeijingYilifinechemicalsCo.Ltd.2.2SynthesisofhierarchicalporoushematiteThetypicalsynthesiswasdividedintothreestagesforbetterunderstandingtheprocess.Inthefirststage,4mmolFe(NO3)39H2Owasdissolvedintoamixedsolutionof10mLethanoland1mLdeionized
29、waterina50mLflaskbyultrasonic.Then,themixturewasheatedat60Cfor40minunderviolentstirring.Toincreasethehydrolysisextent,2LNH3H2Owasaddedintothesolutionandferrichydroxidecolloidformed.Inthesecondstage,afterthecolloidsolutionwascooleddownbyputtingtheflaskinice-waterbathfor10min,1.2gureaand1.2mLformaldeh
30、ydesolutionwereintroducedsequentiallyun-dermildstirring.Afterstirringfor2min,themixturewaskeptstaticfor12h,whichgeneratedyellowprecipitate.Inthelaststage,theyellowprecipitatewasseparatedbycentrifugingat5000rmin-1andwashedwithethanolandwatersuccessivelyforseveraltimes,anddriedat60Cinanoven.Thedriedpr
31、e-cipitatewascalcinatedbyslowlyincreasingtemperaturefromroomtemperatureto400Catarampingrateof1Cmin-1andmaintainedat400Cfor4h.Itproducedhierarchicalpo-roushematite(HPH)network.2.3CharacterizationX-raydiffraction(XRD)patternswererecordedonaRigakuD/max-2200diffractometerwithCuKradiation(=0.15416nm).The
32、morphologyofthesampleswasobservedbyHitachiS-4800withanacceleratingvoltageof10kV.Transmissionelec-tronmicroscopy(TEM)andhigh-resolutionTEM(HRTEM)characterizationswerecarriedoutwithJEOLJEM-2100Fmi-croscopeoperatedat200kV.Nitrogenadsorption-desorptionisothermsweremeasuredonQuantaChrome(Nova2200e)at77K.
33、Allsamplesweredegassedonavacuumlineat300Cfor3hbeforeanalysis.TheBrumauer-Emmett-Teller(BET)methodwasutilizedtocalculatethespecificsurfaceareas.TheporesizedistributionswerederivedfromtheadsorptionbranchesoftheisothermsthroughtheBarrett-Joyner-Halenda(BJH)model.Fouriertransforminfraredspectroscopy(FTI
34、R)analyseswereperformedonanAVATAR360FT-IRspectrome-terintherangeof400-4000cm-1frequencywithascanrateof0.6329cms-1andresolutionof4.0cm-1.2.4PhotocatalysismeasurementThephotocatalyticactivitiesoftheas-preparedHPHmateri-alswereinvestigatedwithrhodamineB(RhB)aspollutant.Typically,30mgofthecatalysiswasdi
35、spersedinto60mLRhBaqueoussolution(110-5molL-1)andmagneticallystirredinthedarkfor2htoensurethethoroughdispersionandfullad-sorption.ThesolutionwasthenexposedtoUVlightirradiationwithadistanceof20cmfroma250-Whigh-pressuremercurylampatroomtemperature.Tomonitorthephotocatalyticpro-cess,4mLmixturesolutionw
36、asaspiratedfromthetesttubewithanintervalof10min.Aftercentrifugation,theUV-Visab-sorptionspectrumofthesupernatantwasrecorded.Theabsorp-tionspectrumofRhBsolutionswasmeasuredbyaLambda950(Perkin-ElmerInstruments)ultraviolet-visiblespectropho-tometer.Toevaluatethestructureeffect,photocatalyticactivi-ties
37、ofcommercialhematitenanoparticleswithaveragediame-tersofca30nm(purchasedfromAladdinInc.,labeledasCNPs)werealsomeasuredunderthesamecondition.3Resultsanddiscussion3.1CharacterizationsofHPHThehierarchicalporoushematite(HPH)wasobtainedbyanimprovedPICAmethod.X-raydiffraction(XRD)wasusedtocharacterizethec
38、rystalstructureoftheas-preparedproducts.AsshowninFig.1b,allthediffractionpatternscanbewellin-dexedto-Fe2O3crystalsofrhombohedralphasewithJCPDSNo.33-0664(Fig.1(a).Thestrongandsharpdiffractionpeakindicatesthehighcrystallinityoftheproduct.Scanningelectronmicroscopy(SEM)images(Fig.2a)showthattheproducti
39、softhree-dimensionalmacroporousnetworkstructurewithaveragemacroporesizeofaround1m.Thehigh-magnifiedSEMimage(Fig.2b)demonstratesthatthemacroporousframeworksarebuiltbytheaggregationofnano-rods.Transmissionelectronmicroscopycharacterizationshowsthattheaggregationproducesmesovoids(insetinFig.2c).High-ma
40、gnifiedTEMimagefurtherrevealsthatthesubunitnanorodsareindeednanoporous(Fig.2c).Fig.2disatypicalHRTEMimagerecordedonanisolatednanorod.Themeasuredinterplanardistanceoftwoadjacentlatticefringeswasabout0.37nm(Fig.2d),correspondingwellwith(012)planeoftherhombohedralhematite(-Fe2O3).Theselectedareaelectro
41、ndiffraction(SAED)patternshownintheinsetofFig.2drevealsthepolycrystallinenatureofthenetworkstructure.Thus,theelectronmicroscopyobservationresultsdemonstratethattheproductsareofhierarchicalporousstructure.Thehierarchicalporouscharacterwasfurtherconfirmedbynitrogenadsorption-desorptionmeasurement.Fig.
42、3showstheN2adsorption-desorptionisothermsoftheHPH.Thesurfacear-eaiscalculatedas37.15m221.8nm.Ascanbeg-1andtheaverageBJHporesizeisaboutseenfromtheisothermpattern,thereisaslowadsorptionofN2startingatlowerrelativepres-sure(p/p0)of0.25,whichindicatestheexistenceofporeswithFig.1XRDpatternsof(a)-Fe2O3with
43、JCPDSNo.33-0664and(b)hierarchicalporoushematiteNo.9FANHai-Binetal.:Fabrication,FormationMechanismandthePhotocatalyticPropertiesofHPHNetworks2217Fig.3Nitrogenadsorption-desorptionisothermsandthecorrespondingBJHporesizedistributioncurve(inset)oftheHPHThepore-sizedistributionwasdeterminedfromtheadsorpt
44、ionbranchoftheisotherm.Fig.2(a,b)SEMand(c)TEMimagesofHPHwithdifferentmagnifications,(d)atypicalHRTEMimagerecordedonananorodInsetin(d)isthecorrespondingSAEDpatternrecordedonanindividualsphere.nanoscaledsize.TheisothermexhibitstypeIVhysteresisloopsatp/p0of0.45-0.98,providingtheevidenceforthemesopo-rou
45、sstructure.Whenthep/p0islargerthan0.89,asharpin-creaseisobservedintheadsorptioncurve.Theadsorptionvol-umecontinuestoincreaseratherthanreachabalance,atypicalcharacteroftheexistenceoflargemicropores.49,50Therefore,thenitrogenadsorption-desorptionresultsfurtherconfirmthehierarchicalporousstructureofthe
46、products.3.2FormationmechanismTogetmoreinformationontheformationmechanismofthehierarchicalporoushematite(-Fe2O3),wetracedthegrowthprocessbycollectingthesamplesatdifferentdurationtime.Sincethecrystallinityofthecolloidsispoor,thecharacteriza-tionswereperformedaftercalcinationat400C.AsshowninFig.4(a,b)
47、,nanorodsaretheexclusiveproductsbeforethein-troductionofureaandformaldehyde.However,incomparisonwiththesubunitnanorodsofthefinalproductsasshowninFig.2c,thereexistsdifferenceintwoaspects.Firstly,theirsizesaresmallerthanthesubunitsofthehollowspheres.Secondly,nointraparticlenanoporesexistinthenanorodso
48、btainedatthefirststage.Whenthemixturewasagedfor6haftertheintro-ductionofureaandformaldehyde,separatedordimer/trimerofhollowspheres(HS)wereobtained(Fig.4(c,d),whichwereaggregatedbynanorods.AscanbeseenfromtheinsetofFig.4d,themorphologyofthenanorodsisthesameasthatofthesubunitinthefinalproducts.Withthea
49、gingtimefurtherFig.4SEM(a,c)andTEM(b,d)imagesoftheproductscollectedatdifferentstagesaftercalcinationinsetin(d)showsamagniedTEMrecordedontheframedareain(d).(a,b)beforetheintroductionofureaandformaldehyde,(c,d)agingfor6haftertheintroductionofureaandformaldehyde;2218ActaPhys.-Chim.Sin.2012Vol.28prolong
50、ed,hierarchicalporousnetworksdominatedtheprod-uctsasshowninFig.2.Onthebasisoftheabovediscussionandcharacterizations,atentativeformationmechanismofthehierarchicalporoushe-matitewasproposedasillustratedinScheme1.Inthefirststage,theweakalkalineNH3H2Oassociatedwithheatingpro-motedthehydrolysisofFe3+into
51、ferrichydroxides.Inthesec-ondstage,thepolymerizationbetweenureaandformaldehydeoccurred,whichproducedUFresins.Itiswell-documentedthatUFoligomeriseasytoadsorbontothesurfaceorevendopedintoinorganiccolloidstoformcomposite.10,51Therefore,theUFresinwouldformhybridswithferrichydroxide(Fe-UF)duringthefurthe
52、rcondensationoftheferrichydrox-ides.Toconfirmthis,theproductwascollectedwhenagingfor3haftertheintroductionofureaandformaldehyde.AscanbeseeninFig.S1a(seeSupportingInformation),nosphereap-pearedatthisstage.Theproductexhibitedasmixturesofnanoparticlesandamorphousmaterial,whichshouldbeUFoligomer.Afterbe
53、ingwashingseveraltimeswithwaterandethanol,theamorphousmaterialswereremovedeffectively.Fig.S2showedtheFTIRspectrumoftheproductsafterbeingwashing.Thedominatedpeakscanbeassignedtosignalsrelat-edtoUFresins.SincethefreeUFwasremovedbywashasdem-onstratedbyTEMobservation,theappearanceoftheFTIRsig-nalsindica
54、tedtheformationofFe-UFcomposite.Aftercalcina-tion,nanorodswithnanovoidsformascanbeseenfromFig.S1c,agreeingwithourproposal.Togetmoreinformationonthegrowthmechanism,wealsocollectedtheproductsobtainedaftertheintroductionofureaandformaldehydeandagedfor6h.TEMobservationdemon-stratedthattheproductsexhibit
55、edassphere-likemorphology.Scheme1SchematicillustrationofatentativemechanismfortheformationofHPHThehigher-magnificationTEMimageshowedthenanoparticleaggragationatthesurfaceofthespheres(Fig.S3c).Thecorre-spondingenergy-dispersivespectrum(EDS)showedthesig-nalsfromFe(Fig.S3c).DuringTEMobservation,thecore
56、be-camevoid(Fig.S3b).InconjunctionwiththeformationofFe2O3hollowstructureaftercalcination(Fig.4(c,d),itisrea-sonabletoconcludethatUFresinfurthercrosslinkedintomi-crocapsuleswithreactionprolonging.TheformedUFmicro-capsules(UFMs)servedassofttemplatefortheaggregationoftheFe-UFhybridnanorods,whichinduced
57、theformationofthehollowspheres.Infact,theformationofUFMs42andtheirtemplatefunctionswerealsoreportedbyothergroups.39Withtheprolongingoftheagingtime,thefurthercrosslink-ingreactionamongtheUFresinonthesurfaceofthehybridsphereswiththeaidofexcessiveformaldehyderesultedintheformationofthenetwork-likestruc
58、tures.Duringcalcination,theUFexperiencedameltingandasubsequentdecomposingprocessasconfirmedbythermogravimetry-differentialthermalanalysis(TG-DTA)measurement(Fig.S4).Themeltandshrink-ageoftheUFMmightinducethemigrationofferricoxyhy-droxidenanoparticles.WiththedecomposingoftheUF,there-leaseofCO2andothergasesontheonehandcausedthecol-lapseofthehollowspheresandthusgeneratedthemacropores,ontheotherhandproducedthenanoporeswithinthenanorodsubunit.3.3PhotocatalyticandelectrochemicalpropertiesPromotedbythehierarchicalporousnetworkstructures,webenchmarkedtheroom-temperaturephotocatalyticactivitiesof
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【世界银行】创新金融工具及其在管辖REDD发展中的作用
- 商业设计师考试的关键机制与试题答案总结
- 广告设计师考试中的设计原则试题及答案
- 中考英语试题及答案陕西
- 助理广告师考试高效学习方式试题及答案
- 2024年纺织设计师职业素质试题及答案
- 研究纺织品的质量与标准体系试题及答案
- 心境障碍试题及答案解析
- 思维导图纺织品设计师证书考试试题及答案
- 关注纺织工程师证书考试分类知识试题及答案
- 高考语文120个重点文言实词
- 江苏省粮食集团招聘笔试题库2024
- 2024年深圳市彩田学校初中部小升初入学分班考试数学模拟试卷附答案解析
- 2024年安徽安庆市交通控股集团有限公司招聘笔试冲刺题(带答案解析)
- 《沙龙培训》课件
- 充电桩四方协议书范本
- 中考英语情景交际和看图写话
- 知道智慧网课《科学社会主义概论》章节测试答案
- 事故调查分析课件
- 《养老护理员》-课件:自然灾害的应对处理知识
- 劳务外包服务方案(技术方案)
评论
0/150
提交评论