




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1 , 2 , 3 , 4 , 5 ,这些简简单单的自然数,是我们从呀呀学语开始就认识的。它们是那样自自然然,因而显得平淡无奇。但我们如果认真研究一下这些数字,就会发现其中妙趣横生。聪明的数学王子高斯在小学的时候就会巧算自然数列之和,这正是由于他对自然数有深刻的了解。高斯小时候在德国的一所农村小学读书。数学老师是位从城里来的先生。他瞧不起穷人的孩子,从不认真教他们,甚至还打骂学生。有一天,他情绪很坏,一上课就命令学生做加法,从1一直加到100,谁算不到就不准回家。所有的孩子都急急忙忙地算起来,老师却在一边看小说,不一会儿,小高斯就算出了结果是5050。老师大吃一惊,奇怪他怎么算得这么快。原来,
2、高斯并不是按1+2+3+4 的顺序计算的。而是把1到100一串数,从两头向中间,一头一尾两两相加,每两个数的和都是101。例如:1+100、2+99、3+98 ,直到50+51,和都是101。这样,100个数正好是50对,因此,101×50就得出5050的总和了。从此,老师再也不敢轻视穷孩子们了。他还从城里买来书,送给高斯,热心帮助他学数学,高斯进步得更快了。小高斯所用的方法,正是许多数学家经过长期努力才找到的等差数列求和的办法。这个故事人人皆知,它说明努力发现和巧妙利用规律是多么重要。现在让我们再看看自然数还有哪些有趣的性质。 我们前面提到过完全数和友好数,除了这两种有趣的数以外,
3、自然数中还有一类数被称为"自守数"。所谓自守数就是自已和自己相乘以后得到的数,尾数不变。在自然数中凡末尾数是1、5和6的数,不论自乘多少次,尾数仍然是1、5、6。 例如:21×21=421 21×21×21=9261325×325=1056256×6×6×6=1296这样的结论是不是完全正确呢?我们可以用代数方法加以证明。让我们以末尾是6的数为例。这样的数可以表示成 ,这里a为任意自然数,那么: 由于a是自然数,得到的结果也必定是自然数,可见它的个位必定是6。高次方情况下也如此,证明从略。用同样方法可以证
4、明1、5结尾的数也是自守数。如果把尾数取到两位,还有没有自守的性质呢?有。比如末尾是25和76的数就是自守数。 如果尾数取到三位、四位或更高位数,还能找到自守数吗?经过数学家的计算寻觅,发现尾数为376、9376、09376、109376、7109376以及末尾是625、0625、90625、890625、2890625、的数都是自守数。 让我们再来看看自然数中的奇数和偶数。 奇数数列是1,3,5,7,n , (n为项数)偶数数列是2,4,6,8,2n ,(n为项数)人们研究奇数,发现如下的性质: 这个结论可以用数学归纳法来证明,不过相当麻烦。其实我们只要画一张最简单的方格图,这个性质就一目了
5、然了。图中除左下角的"·"代表"1"以外,每条虚线分别代表一个奇数。这张图清楚地说明了为什么自然数中奇数数列各项之和等于项数的平方。 自然数中偶数数列则有如下的性质: 2=1×2 2+4=6=2×32+4+6=12=3×4 2+4+6+8=20=4×5 2+4+6+8+ +n =n(n+1) 不论用数学归纳法还是用画图方法也都能证明这个结论。此外,对所有的自然数,下面的规律也成立并且十分有趣: 自然数中还有一类数被称为回文数。回文数就是一个数的两边对称,如11,121,1221,9339,30203等等。
6、回文数本身倒也没有什么奇特。不过人们发现大多数的自然数,如果把它各位数字的顺序倒置,再与原数相加,将得数再按上述步骤进行,经过有限的步骤后必能得到一个回文数: 如:95+59=154 154+451=605605+506=11111111就是一个回文数。 又如: 198+891=10891089+9801=10890 10890+09801=20691 20691+19602=40293 40293+39204=79497 79497又是一个回文数。 是不是所有的自然数都有这个性质呢?不是。例如三位数中的196似乎用上述办法就得不到回文数。有人用计算机对196用上述办法重复十万次,仍然没有得到
7、回文数。但至今还没有人能用数学证明办法对这个问题下结论,所有"196问题"也成了世界性数学难题之一。经过计算,在前十万个自然数中有5996个数就像196一样很难得到回文数。 让我们再看一个有趣的数字现象:随意取4个数,如8,3,12,5写在圆周的四面。用两个相领数中的大数减小数,将得数写在第二圈圆周 。如此做下去不久,必会得到4个相同的数。这个现象是意大利教授杜西在1930年发现的,所以叫作"杜西现象"。 在自然数中还有一些数,看起来貌不惊人,但却十分特别,令人百思不得其解。6174就是其中之一。 把6174各位数字从大到小排列,再从小到大排列,然后用大
8、数减小数,结果还得到6174。7641-1467=6174 有趣的是,不仅6174本身,就是任意一个四位数字,只要4个数字不完全相同,用上述办法重复多次,最后终能得到6174这个数。 例如:1234这个数,我们用下列步聚运算:4321-1234=30878730-0378=83528532-2358=6174 再举一例,如2883,则有: 8832-2388=1998 9981-1899=7982 9872-2789=7083 7830-0387=7443 7443-3447=3996 9963-3699=6264 6642-2466=4176 7641-1467=6174 对三位数字,用这个
9、办法最终将得到495。例如867,运算如下: 876-678=198 981-189=792 972-279=693 963-369=594 954-459=495 你还可以用其它数字来验证一下,看看对不对。 五位以上的数字,这个规律就不明显了。 最后再让我们看两组有趣的数: 第一组为:1, 6 , 7 , 23 , 24 , 30 , 38 , 47 , 54 , 55 第二组为:2, 3 , 10 , 19 , 27 , 33 , 34 , 50 , 51 , 56 这两组数有什么奇特之处呢? 首先,这两组数都没有公因数,而且两组数各自的和都是285。不过这算不上奇怪,拼拼凑凑,谁也弄得出来。不要着急,我们再往下看。如果计算一下它们的方幂之和,你就会大为惊奇。因为数字太多,我们不能一一列下去,让我们把结果列出来方幂次数每组数方幂和0 12345678 10 285116855360852604381313097531256734006805 3512261547765185039471773893
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 软件设计师考试经验交流想法试题及答案
- 网络连接搭建试题及答案解析
- 计算机辅助设计的应用领域试题及答案
- 2025届江苏省南京市育英外学校七年级数学第二学期期末经典试题含解析
- 2025至2030年中国洗发纸行业投资前景及策略咨询研究报告
- 法学概论跨学科研究方法试题及答案
- 2025至2030年中国工业用光电编码器行业投资前景及策略咨询研究报告
- 2025至2030年中国全隔爆式可燃气体检测报警器行业投资前景及策略咨询研究报告
- 2025年中国防滑松紧带市场调查研究报告
- 油品分析考试试题及答案
- 社会科学研究方法博士生课程
- 中药饮片处方点评表
- 人教版初中音乐七年级上册《牧歌》说课稿课件
- 2021年春新青岛版(五四制)科学四年级下册全册教案
- 毕业论文指导教师指导记录6篇
- 石油化工设备维护检修规程
- 贝氏体钢轨超高周疲劳行为的研究课件
- 中国各乡镇名录大全、街道名录大全(甘肃省)
- GB∕T 2518-2019 连续热镀锌和锌合金镀层钢板及钢带
- 青海省部门统计数据直报系统
- 讲人工智能的诞生课件
评论
0/150
提交评论