2平面与平面平行的判定_第1页
2平面与平面平行的判定_第2页
2平面与平面平行的判定_第3页
2平面与平面平行的判定_第4页
2平面与平面平行的判定_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、北京师范大学教育实习教案(注:须于上课前二日写好)部/院/系 数学科学学院专业数学与应用数学 姓名苏代辉学号0810012942 我校指导教师刘洁民 实习学校教学指导教师刘芹原任课教师刘芹2012年 10 月 10 日 (星期 3 ) 第 3 节课 本人本次实习第 2 个教案 实习学校和平街一中实习班级高二(10)班实习科目数学教学课题平面与平面平行的判定所用教材教材名称:数学A版必修2第 2册,第 2 章 2 节56页出版社:人民教育出版社.教学目标1、知识与技能通过观察探究,进行合情推理发现平面与平面平行的性质定理,并能准确地运用数学语言表述定理及对定理作简单应用。2、过程与方法通过直观感

2、知、操作确认的方法,培养学生几何直观。让学生体会通过自己观察操作发现数学结论的过程。3、情感目标通过自主学习,主动参与,积极探究的学习过程,激发学生学习数学的信心与兴趣,培养良好的思维习惯,渗透化归与转化的数学思想。教学重点性质定理的探究;性质定理的应用。教学难点通过直观感知,操作确认,获取直线与平面平行的性质定理。综合应用线面平行的判定定理和性质定理进行线面平行与线线平行的转化。课时安排1课时教学用具学案教学方法教师启发引导、学生主动探究和问题驱动型教学。北京师范大学教育实习教案教学过程及内容一、知识回顾,引入新知。问题1、空间中平面与平面的位置关系有哪些?问题2、如何判定直线与平面平行?

3、师:(学生回答完)恩,好。由直线与平面内的一条直线平行可得该直线与此平面平行,那大家有没有想过:由线面平行,我们能推导出什么呢?这就是今天我们要学习的新内容直线与平面平行的性质。二、创设情境,探究定理。1、观察三角形的一条边所在直线与桌面平行,这个三角板所在的平面与桌面平行吗?三角板的两条边所在直线分别与桌面平行,情况又如何呢?(设计意图,通过观察,让学生动手操作,发现一条边平行时,两个不一定平行,两条边才可平行,获得面面平行的直观感知。)2、讨论分析。 根据定义可知,判定平面与平面平行的关键在于判定他们有没有公共点,若一个平面内的所有的直线都与另一个平面平行,那么这两个平面一定平行。否则,这

4、两个平面就会有公共点,这样在一个平面内通过这个公共点的直线就不平行于另一个平面了。3、借助长方体的模型思考: 平面内有一条直线与平面平行,平面、平行吗? 平面内有两条直线与平面平行,平面、平行吗?(设计意图:由长方体图形,让学生发现平面内有一条直线与平面平行,不能得出二者平行;而且两条直线时得分情况,一种是平行的两直、线,这种情况也是不行的,自然就会问相交的两条直线可以吗?)4. 如果平面内有两条相交直线与平面平行,情况如何?分析:借助长方体模型,平面ABCD内两条相交直线AC、BD分别与平面EFGH平行内的两条相交直线EG、HF平行。由直线与平面平行的判定定理可知,这两条相交直线AC、BD都

5、与平面EFGH平行,此时平面ABCD平行于平面EFGH。5、探究结果。 判定定理:一个平面内的两条相交直线与另一个平面平行, 则这两个平面平行。 符号表示:a,b,ab=P,a,b =。三、定理应用。 1、判断下列说法是否正确。 如果一个平面内有两条直线平行于另一个平面,那么这两个平面平行。 如果一个平面内有无数条直线平行于另一个平面,那么这两个平面平行。 若一个角的两边分别平行另一角的两边,这这两个角相等。 在一个平面上有三个不共线的点到另一个平面的距离相等,则这两个平面平行。 平面内有两条不平行的直线都平行于另一个平面,则。(设计意图:判段题是对判定定理的直接应用,加深学生对定理的理解)。

6、2、例:已知正方体ABCD-EFGH。求证:面AHF平面CBG。 证明:ABCD-EFGH是正方体。 HGAB。HG=AB。 又EF=AB,EFAB。 ABHG,HG=AB ABGH 为平行四边形AHBG又 AH 面BD G,BG面BDG。 AH面BDG。 同理AF面BDG。 又AHAF=A , 面AHF平面CBG。 总结:要证面面平行先转化为线面平行,最后转化为线线平行。常见的证线线平行的方法:三角形、梯形的中位线;平行四边形的对边;平行的传递性;线面平行得线线平行。3、练习(课本P58)如图,正方体ABCD-EFGH中,M、N、P、Q分别是棱AB、AD、BC、CD的中点。求证:平面EMN平

7、面QPFH。 分析:要证面面平行自然转化为线面平行,要证线面平行,首先得找线线平行。由题不难发现MN与PQ平行,EN与HQ平行,EM与FP平行。四、课堂小结。1、判定定理的应用条件: 平面内的两条相交直线;两直线均与另一平面平行。2、符号语言:a,b,ab=P,a,b =。3、数学思想:面面平行 = 线面平行 = 线线平行.空间问题 = 平面问题.五、布置作业。 1.补充练习。 已知,B为ACD所在平面外的一点,M、N、G分别为ABC、ABD、BCD的重心。 求证:面MNG面ACD。 求SMNG :SADC 的值。2.学习目标与检测平面与平面平行的判定。板书设计2.2.2平面与平面平行的判定练

8、习:如图,正方体ABCD-EFGH中,M、N、P、Q分别是棱AB、AD、BC、CD的中点。求证:平面EMN平面QPFH。例:已知正方体ABCD-EFGH。求证:面AHF平面CBG。 证明:ABCD-EFGH是正方体。 HGAB。HG=AB。 又EF=AB,EFAB。 ABHG,HG=AB ABGH 为平行四边形AHBG又 AH 面BD G,BG面BDG。AH面BDG。同理AF面BDG。又AHAF=A ,面AHF平面CBG。判定定理: 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。图形语言:符号语言:a,b,ab=P,且a,b =。北京师范大学教育实习教案课后总结与评议纪录自我分析和同学意见这堂课相对第一节课显得自然,对于学生“平面与平面重合算什么位置关系”与“一个平面内的两条相交直线与另一个平面内的两条相交直线平行,能否得二者平行”的突然

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论