热分析动力学汇总_第1页
热分析动力学汇总_第2页
热分析动力学汇总_第3页
热分析动力学汇总_第4页
热分析动力学汇总_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上热分析动力学一、 基本方程 对于常见的固相反应来说,其反应方程可以表示为 (1)其反应速度可以用两种不同形式的方程表示:微分形式 (2)和 积分形式 (3)式中:t时物质A已反应的分数; t时间; k反应速率常数; f()反应机理函数的微分形式; G()反应机理函数的积分形式。由于f()和G()分别为机理函数的微分形式和积分形式,它们之间的关系为: (4)k与反应温度T(绝对温度)之间的关系可用著名的Arrhenius方程表示: (5)式中:A表观指前因子; E表观活化能; R通用气体常数。 方程(2)(5)是在等温条件下出来的,将这些方程应用于非等温条件时,有如下关

2、系式: (6)即: 式中:T0DSC曲线偏离基线的始点温度(K); 加热速率(K·min-1)。于是可以分别得到:非均相体系在等温与非等温条件下的两个常用动力学方程式: (等温) (7) (非等温) (8)动力学研究的目的就在于求解出能描述某反应的上述方程中的“动力学三因子” E、A 和f()对于反应过程的DSC曲线如图所示。在DSC分析中,值等于Ht/H0,这里Ht为物质A在某时刻的反应热,相当于DSC曲线下的部分面积,H0为反应完成后物质A的总放热量,相当于DSC曲线下的总面积。二、 微分法21 Achar、Brindley和Sharp法:对方程进行变换得方程: (9)对该两边直

3、接取对数有: (10) 由式(11)可以看出,方程两边成线性关系。 通过试探不同的反应机理函数、不同温度T时的分解百分数,进行线性回归分析,就可以试解出相应的反应活化能E、指前因子A和机理函数f().22 Kissinger法Kissinger在动力学方程时,假设反应机理函数为,相应的动力学方程表示为: (11)该方程描绘了一条相应的热分析曲线,对方程(12)两边微分,得 (12)在热分析曲线的峰顶处,其一阶导数为零,即边界条件为:T=Tp (13) (14)将上述边界条件代入(13)式有: (15)Kissinger研究后认为:与无关,其值近似等于1,因此,从方程(16)可变换为: (16)

4、对方程(15)两边取对数,得方程(18),也即Kissinger方程: ,i=1,2,4 (17)方程(18)表明,与成线性关系,将二者作图可以得到一条直线,从直线斜率求Ek,从截距求Ak,其线性相关性一般在0.9以上。23 两点法Kissinger法是在有假定条件下得到的简化方程。如果我们不作任何假设,只是利用数学的方法进行,可以得到两点法。由方程(2)、(5)知 (18)方程(19)两边对T微分,得 (19)当T=Tp时,反应速率达到最大,=p,从边界条件有:我们得到第一个方程: ( 20)方程(20)两边对T微分,得 (21)这相当于对DSC曲线求二阶导,为的是求DSC曲线的拐点。在DS

5、C曲线的拐点处,我们有边界条件:将该条件代入方程(22),从而得到第二个方程+ =0 (22)联立方程(21)和(22),即得到只与反应温度T、机理函数f()有关的方程如下:式中: 通过解方程就可求出非等温反应动力学参数E和A的值。在该方法中,只需要知道升温速率,拐点的温度Ti、分解百分数i,峰顶的温度Tm、分解百分数m,就可以试算不同的f(),以求解出对应于该f()时的活化能E值、指前因子A值。三 积分法对于积分法,则由方程(8)求积分得 (23)式中:对P(u)的不同处理,构成了一系列的积分法方程,其中最著名的方法和方程如下:31 Ozawa法通过对方程(23)变换,得Ozawa公式: (

6、24)方程(24)中的E,可用以下两种方法求得。方法1:由于不同i下各热谱峰顶温度Tpi处各值近似相等,因此可用“”成线性关系来确定E值。令: 这样由式(24)得线性方程组解此方程组求出a,从而得E值。Ozawa法避开了反应机理函数的选择而直接求出E值,与其它方法相比,它避免了因反应机理函数的假设不同而可能带来的误差。因此往往被其它学者用来检验由他们假设反应机理函数的方法求出的活化能值,这是Ozawa法的一个突出优点。32 Phadnis法 式中 (25)该方程由Phadnis等人提出。对于合适的机理函数,与成线性关系,由此求出E值,但无法求出A值。33 Coats-Redfern近似式取方程

7、(23)右端括号内前二项,得一级近似的第一种表达式Coats-Redfern近似式: (26)式中: 并设,则有 积分方程(4-3),整理,两边取对数,得当时, (27)当时, (28)上述两个方程都称为Coats-Redfern方程。由于对一般的反应温区和大部分的E值而言,所以方程(4-4)和(4-5)右端第一项几乎都是常数,当时,对作图,而时,对作图,都能得到一条直线,其斜率为(对正确的n值而言)。3 4 Mac Callum-Tanner近似式该法无需对p(u)作近似处理,可以证明,对于一定的E值,-log p(u)与1/T为线性关系,并可表达为: 而且,E对也是线性关系,可表达为: 于

8、是有 虽然u对E不是线性关系,但是logu对logE是线性关系,即: 于是有 借助于附录A中列出的logp(u)u表计算出相应的常数后,代入上式,得: 式中:E 活化能,kcal/mol T 温度,K 上述方程称Mac Callum-Tanner近似式。4 计算结果判据 提出的选择合理动力学参数及最可几机理函数的五条判据是: (1) 用普适积分方程和微分方程求得的动力学参数E和A值应在材料热分解反应动力学参数值的正常范围内,即活化能E值在80250kJ·mol-1之间,指前因子的对数(lgA/s-1)值在730之间;(2) 用微分法和积分法计算结果的线性相关系数要大于0.98;(3)

9、 用微分法和积分法计算结果的标准偏差应小于0.3;(4) 根据上述原则选择的机理函数f()应与研究对象的状态相符;(5) 与两点法、Kissinger法、Ozawa法和其它微积分法求得的动力学参数值应尽量一致。5 常用的动力学机理函数函数号函数名称机理积分形式G()微分形式f()1抛物线法则一维扩散, 1D, D1减速形-t曲线22Valensi方程二维扩散, 园柱形对称, 2D, D2, 减速形-t曲线3Jander方程二维扩散, 2D, 4Jander方程二维扩散,2D,n=25Jander方程三维扩散,3D,6Jander方程三维扩散,球形对称,3D,D3,减速形-t曲线,n=27G.-

10、B方程(*)三维扩散,球形对称,3D,D4,减速形-t曲线8反Jander方程三维扩散,3D函数号函数名称机理积分形式G()微分形式f()9Z.-L.-T.方程(*)三维扩散,3D10Avrami-Erofeev方程随机成核和随后生长,A4,S形-t曲线,m=411Avrami-Erofeev方程随机成核和随后生长,A3,S形-t曲线,m=312Avrami-Erofeev方程随机成核和随后生长,13Avrami-Erofeev方程随机成核和随后生长,A2,S形-t曲线,m=214Avrami-Erofeev方程随机成核和随后生长,15Avrami-Erofeev方程随机成核和随后生长,16M

11、ample单行法则,一级随机成核和随后生长,假设每个颗粒上只有一个核心,A1,F1,S形-t曲线,m=117Avrami-Erofeev方程随机成核和随后生长,函数号函数名称机理积分形式G()微分形式f()18Avrami-Erofeev方程随机成核和随后生长,19Avrami-Erofeev方程随机成核和随后生长,20Avrami-Erofeev方程随机成核和随后生长,21P.-T.方程(*)自催化反应, 枝状成核, Au, B1 (S形-t曲线)22Mampel Power法则(幂函数法则)23Mampel Power法则(幂函数法则)24Mampel Power法则(幂函数法则)25Ma

12、mpel Power法则(幂函数法则)相边界反应(一维),R1, n=1126Mampel Power法则(幂函数法则)27Mampel Power法则(幂函数法则)n=2续表函数号函数名称机理积分形式G()微分形式f()28反应级数2930收缩球状(体积)相边界反应,球形对称,R3,减速形-t曲线,n=3(三维)3132收缩园柱体(面积)相边界反应,园柱形对称,R2,减速形-t曲线,n=2(二维)33反应级数n=234反应级数n=335反应级数n=436二级化学反应,F2,减速形-t曲线37反应级数化学反应382/3级化学反应39指数法则E1,n=1,加速形-t曲线40指数法则n=2续表函数号函数名称机理积分形式G()微分形式f()41三级化学反应,F3,减速形-t曲线42S-B方程(*)固相分解反应SB(m,n)43反应级数化学反应, RO(n),44J-M

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论