选2-331回归分析的基本思想及其初步应用_第1页
选2-331回归分析的基本思想及其初步应用_第2页
选2-331回归分析的基本思想及其初步应用_第3页
选2-331回归分析的基本思想及其初步应用_第4页
选2-331回归分析的基本思想及其初步应用_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Page 13.1回归分析的基回归分析的基本思想及其初步应本思想及其初步应用用Page 2必修必修3(3(第二章第二章 统计统计) )知识结构知识结构 收集数据收集数据 ( (随机抽样随机抽样) )整理、分析数据整理、分析数据估计、推断估计、推断简单随机抽简单随机抽样样分层抽样分层抽样系统抽样系统抽样用样本估计总体用样本估计总体变量间的相关关系变量间的相关关系 用样本用样本的频率的频率分布估分布估计总体计总体分布分布 用样本用样本数字特数字特征估计征估计总体数总体数字特征字特征线性回归分析线性回归分析Page 31、两个变量的关系、两个变量的关系不相关不相关相关关相关关系系函数关系函数关系线性

2、相关线性相关非线性相关非线性相关问题问题1:现实生活中两个变量间的关系有哪:现实生活中两个变量间的关系有哪些呢?些呢?相关关系:相关关系:对于两个变量,当自变量取值一定对于两个变量,当自变量取值一定时,因变量的取值带有一定随机性的两个变量时,因变量的取值带有一定随机性的两个变量之间的关系。之间的关系。Page 4思考:相关关系与函数关系有怎样的不同?函数关系中的两个变量间是一种确定性关系相关关系是一种非确定性关系 函数关系是一种理想的关系模型 相关关系在现实生活中大量存在,是更一般的情况Page 5问题问题2:对于线性相关的两个变量用什么方法:对于线性相关的两个变量用什么方法来刻划之间的关系呢

3、?来刻划之间的关系呢?2、最小二乘估计、最小二乘估计最小二乘估计下的线性回归方程:最小二乘估计下的线性回归方程:ybxa121()()()niiiniixXyYbXX aYbXPage 6niiniiixnxyxnyxb1221xbyaybxaniixnx11niiyny11回归直线必过样本点的中回归直线必过样本点的中心心),(yxPage 73、回归分析的基本步骤回归分析的基本步骤:画散点图画散点图求回归方程求回归方程预报、决策预报、决策这种方法称为回归分这种方法称为回归分析析.回归分析回归分析是对具有相关关系的两个变量进行统是对具有相关关系的两个变量进行统计计分析的一种常用方法分析的一种常

4、用方法.Page 8回归分析知识结构图回归分析知识结构图问题背景分析问题背景分析线性回归模型线性回归模型两个变量线性相关两个变量线性相关最小二乘法最小二乘法两个变量非线性相关两个变量非线性相关非线性回归模型非线性回归模型残差分析残差分析散点图散点图应用应用注:虚线表示高中阶段不涉及的关系2RPage 9 比数学3中“回归”增加的内容数学数学统计统计1. 画散点图画散点图2. 了解最小二乘法的了解最小二乘法的思想思想3. 求回归直线方程求回归直线方程ybxa 用回归直线方程解用回归直线方程解决应用问题决应用问题选修1-2统计案例5. 引入线性回归模型引入线性回归模型ybxae6. 了解模型中随机

5、误差项了解模型中随机误差项e产产生的原因生的原因7. 了解相关指数了解相关指数 R2 和模型和模型拟合的效果之间的关系拟合的效果之间的关系 了解残差图的作用了解残差图的作用 利用线性回归模型解决一利用线性回归模型解决一类非线性回归问题类非线性回归问题 正确理解分析方法与结果正确理解分析方法与结果Page 10教学情境设计教学情境设计问题一:问题一:结合例结合例1得出线性回归模型及随机误差。并且得出线性回归模型及随机误差。并且区分函数区分函数 模型和回归模型。模型和回归模型。问题二:问题二:在线性回归模型中,在线性回归模型中,e是用是用bx+a预报真实值预报真实值y的随机误差,的随机误差, 它是

6、一个不可观测的量,那么应如何研究随机误差呢?它是一个不可观测的量,那么应如何研究随机误差呢?问题三:问题三:如何发现数据中的错误?如何衡量随机模型的拟合效果?如何发现数据中的错误?如何衡量随机模型的拟合效果?问题四:问题四:结合例结合例1思考:用回归方程预报体重时应注意什么?思考:用回归方程预报体重时应注意什么?问题五:问题五:归纳建立回归模型的基本步骤。归纳建立回归模型的基本步骤。问题六:问题六:若两个变量呈现非线性关系,如何解决?(分析例若两个变量呈现非线性关系,如何解决?(分析例2)Page 11例例1 从某大学中随机选取从某大学中随机选取8名女大学生,其身高和体重数据如表名女大学生,其

7、身高和体重数据如表1-1所示。所示。5943616454505748体重/kg170155165175170157165165身高/cm87654321编号求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为高为172cm的女大学生的体重。的女大学生的体重。问题一:结合例问题一:结合例1得出线性回归模型及随机误差。并得出线性回归模型及随机误差。并且且区分函数模型和回归模型。区分函数模型和回归模型。解:解:1、选取身高为自变量、选取身高为自变量x,体重为因变量,体重为因变量y,作散点图:,作散点图:Page 122.回归方程

8、:回归方程:172.85849. 0 xy学学身身 高高 1 17 72 2c cm m女女 大大生生 体体 重重y y = = 0 0. .8 84 49 91 17 72 2 - - 8 85 5. .7 71 12 2 = = 6 60 0. .3 31 16 6( (k kg g) )探究:身高为172cm的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗?答:用这个回归方程不能给出每个身高为答:用这个回归方程不能给出每个身高为172cm的女大学生的体重的预测值,的女大学生的体重的预测值,只能给出她们平均体重的估计值。只能给出她们平均体重的估计值。Page 13由于

9、所有的样本点不共线,而只是散布在某一直线的附近,由于所有的样本点不共线,而只是散布在某一直线的附近,所以身高和体重的关系可以用所以身高和体重的关系可以用线性回归模型线性回归模型来表示:来表示:其中其中a和和b为模型的未知参数,为模型的未知参数,e称为随机称为随机误差误差.eabxyPage 14函数模型与函数模型与“回归模型回归模型”的关系的关系函数模型:因变量函数模型:因变量y完全由自变量完全由自变量x确定确定回归模型:回归模型: 预报变量预报变量y完全由解释变量完全由解释变量x和随机误差和随机误差e确定确定Page 15注:注:e 产生的主要原因:产生的主要原因: (1)所用确定性函数不恰

10、当;所用确定性函数不恰当; (2)忽略了某些因素的影响;忽略了某些因素的影响; (3)观测误差。观测误差。思考思考:产生随机误差项产生随机误差项e的原的原因是什么?因是什么?Page 16问题二:问题二:在线性回归模型中,在线性回归模型中,e是用是用bx+a预报真实值预报真实值y的随机误的随机误差,差, 它是一个不可观测的量,那么应如何研究随机误差呢?它是一个不可观测的量,那么应如何研究随机误差呢?,1,2,. ,1,2,.iiiiiiiiy bx aineyyy bx aine 1122nniii残 差 : 一 般 的 对 于 样 本 点 ( x,y) ,(x,y),.,(x,y ),它 们

11、 的 随 机 误 差 为e其 估 计 值 为称 为 相 应 于 点 (x,y)的 残 差 。 结合例结合例1除了身高影响体重外的其他因素是不可测量的,不能希望有某种除了身高影响体重外的其他因素是不可测量的,不能希望有某种方法获取随机误差的值以提高预报变量的估计精度,但却可以估计预报变量方法获取随机误差的值以提高预报变量的估计精度,但却可以估计预报变量观测值中所包含的随机误差,这对我们查找样本数据中的错误和模型的评价观测值中所包含的随机误差,这对我们查找样本数据中的错误和模型的评价极为有用,因此在此我们引入残差概念。极为有用,因此在此我们引入残差概念。e=y-(bx+a)Page 17eyy 随

12、机误差随机误差eyye的估计量的估计量样本点:样本点:1122(,),(,),. ,(,)nnxyxyxy相应的随机误差为:相应的随机误差为:,1,2,.,iiiiieyyybxa in 随机误差的估计值为:随机误差的估计值为:,1,2,.,iiiiieyyybxa inie称为相应于点称为相应于点 的的残差残差.(,)iixy22111( , )(2)22niieQ a b nnn 的估计量的估计量2 为为( , )Q a b称为称为残差平方和残差平方和.Page 18问题三:如何发现数据中的错误?如何衡量随机模型的拟合问题三:如何发现数据中的错误?如何衡量随机模型的拟合效果?效果?(1)我

13、们可以通过分析发现原始数据中的可疑数据,判断建立我们可以通过分析发现原始数据中的可疑数据,判断建立模型的拟合效果。模型的拟合效果。iiiey bx a( 1) 计 算( i=1,2,.n)残 差 分 析( 2) 画 残 差 图( 1) 查 找 异 常 样 本 数 据( 3) 分 析 残 差 图 ( 2) 残 差 点 分 布 在 以 O为 中 心 的 水 平 带 状 区 域 , 并 沿水 平 方 向 散 点 的 分 布 规 律 相 同 。Page 19残差图的制作和作用:残差图的制作和作用:制作:坐标纵轴为残差变量,横轴可以有不同的选择制作:坐标纵轴为残差变量,横轴可以有不同的选择. . 横轴为

14、编号:可以考察残差与编号次序之间的关系,横轴为编号:可以考察残差与编号次序之间的关系, 常用于调查数据错误常用于调查数据错误. . 横轴为解释变量:可以考察残差与解释变量的关系,横轴为解释变量:可以考察残差与解释变量的关系,常用于研究模型是否有改进的余地常用于研究模型是否有改进的余地. .作用:判断模型的适用性若模型选择的正确,残差图中的作用:判断模型的适用性若模型选择的正确,残差图中的点应该分布在以横轴为中心的带形区域点应该分布在以横轴为中心的带形区域. .Page 20下面表格列出了女大学生身高和体重的原始数据以及相应的残差数据。下面表格列出了女大学生身高和体重的原始数据以及相应的残差数据

15、。编号12345678身高/cm165165157170175165155170体重/kg4857505464614359残差-6.3732.6272.419-4.6181.1376.627-2.8830.382Page 21残差图的制作及作用。残差图的制作及作用。坐标纵轴为残差变量,横轴可以有不同的选择;坐标纵轴为残差变量,横轴可以有不同的选择;若模型选择的正确,残差图中的点应该分布在以若模型选择的正确,残差图中的点应该分布在以横轴为心的带形区域横轴为心的带形区域;对于远离横轴的点,要特别注意对于远离横轴的点,要特别注意。身高与体重残差图异常点 错误数据 模型问题 几点说明:几点说明: 第一

16、个样本点和第第一个样本点和第6个样本点的残差比较大,需要确认在采集过程中是否有人为个样本点的残差比较大,需要确认在采集过程中是否有人为的错误。如果数据采集有错误,就予以纠正,然后再重新利用线性回归模型拟合数的错误。如果数据采集有错误,就予以纠正,然后再重新利用线性回归模型拟合数据;如果数据采集没有错误,则需要寻找其他的原因。据;如果数据采集没有错误,则需要寻找其他的原因。 另外,残差点比较均匀地落在水平的带状区域中,说明选用的模型计较合适,这另外,残差点比较均匀地落在水平的带状区域中,说明选用的模型计较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高。样的带状区域的

17、宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高。Page 22误差与残差,这两个概念在某程度上具有很大的相似误差与残差,这两个概念在某程度上具有很大的相似性,性,都是衡量不确定性的指标,可是两者又存在区别。都是衡量不确定性的指标,可是两者又存在区别。误差与测量有关,误差大小可以衡量测量的准确性,误差与测量有关,误差大小可以衡量测量的准确性,误差越大则表示测量越不准确。误差分为两类:系统误差越大则表示测量越不准确。误差分为两类:系统误差与误差与随机误差。其中,系统误差与测量方案有关,通过改随机误差。其中,系统误差与测量方案有关,通过改进测量方案可以避免系统误差。随机误差与观测者,进测量方

18、案可以避免系统误差。随机误差与观测者,测量工具,被观测物体的性质有关,只能尽量减小,测量工具,被观测物体的性质有关,只能尽量减小,却不能避免却不能避免。 残差残差与预测有关,残差大小可以衡量预测的准确与预测有关,残差大小可以衡量预测的准确性。残差越大表示预测越不准确。残差与数据本身的性。残差越大表示预测越不准确。残差与数据本身的分布特性,回归方程的选择有关。分布特性,回归方程的选择有关。Page 23显然,显然,R2的值越大,说明残差平方和越小,也就是说模型拟合效果越好。的值越大,说明残差平方和越小,也就是说模型拟合效果越好。在线性回归模型中,在线性回归模型中,R2表示解析变量对预报变量变化的

19、贡献率。表示解析变量对预报变量变化的贡献率。 R2越接近越接近1,表示回归的效果越好(因为,表示回归的效果越好(因为R2越接近越接近1,表示解析变量和预报变量的,表示解析变量和预报变量的线性相关性越强)线性相关性越强)。 如果某组数据可能采取几种不同回归方程进行回归分析,则可以通过比较如果某组数据可能采取几种不同回归方程进行回归分析,则可以通过比较R2的值的值来做出选择,即选取来做出选择,即选取R2较大的模型作为这组数据的模型。较大的模型作为这组数据的模型。注:相关指数注:相关指数R R2 2是度量模型拟合效果的一种指标。在线性模型中,它代表是度量模型拟合效果的一种指标。在线性模型中,它代表自

20、变量刻画预报变量的能力。自变量刻画预报变量的能力。(2)我们可以用相关指数)我们可以用相关指数R2来刻画回归的效果,其计算公式是来刻画回归的效果,其计算公式是22121()11()niiiniiyyRyy残差平方和。总偏差平方和Page 24相关系数相关系数相关系数的性质相关系数的性质(1)|r|1(1)|r|1(2)|r|(2)|r|越接近于越接近于1 1,相关程度越强;,相关程度越强;|r|r|越接近于越接近于0 0,相关程度,相关程度越弱越弱n 注注:b :b 与与 r r 同号同号n 问题:达到怎样程度,问题:达到怎样程度,x x、y y线性相关呢?它们的相关程度线性相关呢?它们的相关

21、程度怎样呢?怎样呢?n ni ii ii i= =1 1n nn n2 22 2i ii ii i= =1 1i i= =1 1( (x x - - x x) )( (y y - - y y) )r r = =( (x x - - x x) )( (y y - - y y) )2 2_ _n n1 1i i2 2i i2 2_ _n n1 1i i2 2i in n1 1i i_ _ _i ii iy yn ny yx xn nx xy yx xn ny yx xPage 25n niiiii=1i=1nnnn2222iiiii=1i=1i=1i=1(x -x)(y -y)(x -x)(y -

22、y)(x -x) (x -x) (y -y)(y -y)r 相关系数相关系数正相关;负相关正相关;负相关通常:通常:r r-1,-1,-0.75-0.75-负相关很强负相关很强; ; r r0.75,10.75,1正相关很强正相关很强; ; r r-0.75,-0.3-0.75,-0.3-负相关一般负相关一般; ; r r0.3, 0.750.3, 0.75正相关一般正相关一般; ; r r-0.25, -0.25, 0.25-0.25-相关性较弱相关性较弱; ; 对对r r进行显进行显著性检验著性检验 Page 261354总计0.36128.361残差变量0.64225.639回归变量比例

23、平方和来源 从上中可以看出,解析变量对总效应约贡献了从上中可以看出,解析变量对总效应约贡献了64%,即,即R2 0.64,可以叙述为,可以叙述为“身高解析了身高解析了64%的体重变化的体重变化”,而随机误,而随机误差贡献了剩余的差贡献了剩余的36%。 所以,身高对体重的效应比随机误差的效应大得多。所以,身高对体重的效应比随机误差的效应大得多。下面我们用相关指数分析一下例下面我们用相关指数分析一下例1:预报变量的变化程度可以分解为由解释变量引起的变化程度与预报变量的变化程度可以分解为由解释变量引起的变化程度与残差变量的变化程度之和,即残差变量的变化程度之和,即222111()()()nnniii

24、iiiiyyyyyy; Page 27问题四:结合例问题四:结合例1思考:用回归方程预报体重时应注意什么?思考:用回归方程预报体重时应注意什么?1.回归方程只适用于我们所研究的样本的总体。回归方程只适用于我们所研究的样本的总体。2.我们建立的回归方程一般都有时间性。我们建立的回归方程一般都有时间性。3.样本取值的范围会影响回归方程的适用范围。样本取值的范围会影响回归方程的适用范围。4.不能期望回归方程得到的预报值就是预报变量的不能期望回归方程得到的预报值就是预报变量的精确值。精确值。涉及到统计的一些思想:涉及到统计的一些思想:模型适用的总体;模型的时间性;模型适用的总体;模型的时间性;样本的取

25、值范围对模型的影响;模型预报结果的正确样本的取值范围对模型的影响;模型预报结果的正确理解。理解。Page 28一般地,建立回归模型的基本步骤为:一般地,建立回归模型的基本步骤为:(1)确定研究对象,明确哪个变量是解析变量,哪个变量是预报变量。)确定研究对象,明确哪个变量是解析变量,哪个变量是预报变量。(2)画出确定好的解析变量和预报变量的散点图,观察它们之间的关系)画出确定好的解析变量和预报变量的散点图,观察它们之间的关系 (如是否存在线性关系等)。(如是否存在线性关系等)。(3)由经验确定回归方程的类型(如我们观察到数据呈线性关系,则)由经验确定回归方程的类型(如我们观察到数据呈线性关系,则

26、选用线性回归方程选用线性回归方程y=bx+a).(4)按一定规则估计回归方程中的参数(如最小二乘法)。)按一定规则估计回归方程中的参数(如最小二乘法)。(5)得出结果后分析残差图是否有异常(个别数据对应残差过大,或残)得出结果后分析残差图是否有异常(个别数据对应残差过大,或残差呈现不随机的规律性,等等),过存在异常,则检查数据是否有误,或差呈现不随机的规律性,等等),过存在异常,则检查数据是否有误,或模型是否合适等。模型是否合适等。问题五:归纳建立回归模型的基本步问题五:归纳建立回归模型的基本步骤骤Page 29问题六:若两个变量呈现非线性关系,如何解决?问题六:若两个变量呈现非线性关系,如何

27、解决?(分析例(分析例2)例例2 一只红铃虫的产卵数一只红铃虫的产卵数y和温度和温度x有关。现收集了有关。现收集了7组观测数据列于表中:组观测数据列于表中:温度温度xoC21232527293235产卵数产卵数y/个个711212466115325(1 1)试建立产卵数)试建立产卵数y y与温度与温度x x之间的回归方程;并预测温度为之间的回归方程;并预测温度为2828o oC C时产卵时产卵数目。数目。(2 2)你所建立的模型中温度在多大程度上解释了产卵数的变化?)你所建立的模型中温度在多大程度上解释了产卵数的变化? Page 30选变量选变量 解:选取气温为解释变量解:选取气温为解释变量x

28、 x,产卵数,产卵数 为预报变量为预报变量y y。画散点图画散点图假设线性回归方程为假设线性回归方程为 :=bx+a选选 模模 型型分析和预测分析和预测当当x=28时,时,y =19.8728-463.73 93估计参数估计参数由计算器得:线性回归方程为由计算器得:线性回归方程为y=y=19.8719.87x x-463.73-463.73 相关指数相关指数R R2 2= =r r2 20.8640.8642 2=0.7464=0.7464所以,一次函数模型中温度解释了所以,一次函数模型中温度解释了74.64%的产卵数变化。的产卵数变化。0501001502002503003500369121

29、51821242730333639当当x=28时,时,y =19.8728-463.73 93方法一:一元函数模型方法一:一元函数模型Page 31 y= c1 x2+c2 变换变换 y= c1 t+c2 非线性关系非线性关系 线性关系线性关系问题问题选用选用y=c1x2+c2 ,还是,还是y=c1x2+cx+c2 ?问题问题3 产卵数产卵数气温气温问题问题2如何求如何求c1、c2? t=x2方法二,二元函数模型方法二,二元函数模型Page 32平方变换平方变换:令令t=xt=x2 2,产卵数,产卵数y y和温度和温度x x之间二次函数模型之间二次函数模型y=bxy=bx2 2+a+a就转化为

30、产卵数就转化为产卵数y y和温度的平方和温度的平方t t之间线性回归模型之间线性回归模型y=bt+ay=bt+a温度温度21232527293235温度的平方温度的平方t44152962572984110241225产卵数产卵数y/个个711212466115325作散点图,并由计算器得:作散点图,并由计算器得:y y和和t t之间的线性回归方程为之间的线性回归方程为y=y=0.3670.367t t-202.54-202.54,相关指数,相关指数R R2 2= =r r2 20.8960.8962 2=0.802=0.802将将t=xt=x2 2代入线性回归方程得:代入线性回归方程得: y=

31、y=0.3670.367x x2 2 -202.54 -202.54当当x x=28=28时时,y y=0.367=0.36728282 2- -202.5485202.5485,且,且R R2 2=0.802=0.802,所以,二次函数模型中温度解所以,二次函数模型中温度解释了释了80.2%80.2%的产卵数变化。的产卵数变化。tPage 33产卵数产卵数气温气温 变换变换 y=bx+a 非线性关系非线性关系 线性关系线性关系43c xyc e对数对数方法三:指数函数模型Page 34xccexccecyxc43433lnlnlnlnlnln4abxzzybcac则有令,ln,ln43温度x

32、/21232527Z=lny1.9462.3983.4053.178产卵数y/个71121242932354.1904.7455.78466115325c由计算器得:由计算器得:z关于关于x的线性回归方程的线性回归方程相关指数相关指数 因此因此y关于关于x的非线的非线性回归方程为性回归方程为98. 02R489. 3272. 0 xz当当x=28 时,时,y 44 ,指数回归模型中温度解释了,指数回归模型中温度解释了98%的产卵数的变化的产卵数的变化C489. 3272. 0 xeyPage 35函数模型相关指数R2线性回归模型0.7464二次函数模型0.802指数函数模型0.98最好的模型是

33、哪个最好的模型是哪个?显然,指数函数模型最好!显然,指数函数模型最好!Page 36(2)20.367202.543yx(1)0.2723.849xye 利用残差计算公式:利用残差计算公式:0.2723.849(1)(1),1,2,7ixiiiieyyyei (2)(2)20.367202.543,1,2,7iiiiieyyyxi77.968-58.265-40.104-41.000-5.83219.40047.69634.675-13.3819.230-8.9501.875-0.1010.557325115662421117Y35322927252321X(1)ie(2)ie由残差平方和:由残差平方和:21niiQe (1)(2)1550.538,15448.431.QQ故指数函数模型的拟合效果比二次函数的模拟效果好故指数函数模型的拟合效果比二次函数的模拟效果好.或由条件或由条件R2分别为分别为0.98和和0.80,同样可得它们的效果,同样可得它们的效果.Page 37在散点图中,样本点没有分布在某个带状区域内,在散点图中,样本点没有分布在某个带状区域内,因此两个变量不呈现线性相关关系,所以不能直接因此两个变量不呈现线性相关关系,所以不能直接利用线性回归方程来建立两个变量之间的关系利用线性回归方程来建立两个变量之间的关系.令令z=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论