




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第19卷第3期2002年6月控制理论与应用CONTROLTHEORYANDAPPLICATIONSVol.19No.3June2002ArticleID:1000-8152(2002)03-0369-07RobustControlofaClassofNonlinearSystems3withL-BoundedDisturbanceWUMin1,2,ZHANGLingboandLIUGuoping12,3(1.CollegeofInformationScience&Engineering,CentralSouthUniversityChangsha,410083,P.R.China;2.
2、SchoolofMechanical,Materials,ManufacturingEngineeringandManagement,UniversityofNottinghamNottingham,UK;3.InstituteofAutomation,AcademiaSinicaBeijing,100080,P.R.China)Abstract:InthesenseofLnorm,robuststabilizationandtrackingcontrolproblemsarefirstdefinedforuncertainnon2linearsystems.Usingthetechnique
3、offeedbacklinearizationandLyapunovapproach,therobustcontrollerscorrespondingtotherobustcontrolproblemsaredesigned.Finally,asimulationresultshowsthecorrectnessofthedesign.Keywords:robustcontrol;nonlinearsystem;Lnorm;feedbacklinearizationDocumentcode:A一类具有L吴敏1,2张凌波13(11中南大学信息科学与工程学院长沙,410083;21英国诺丁汉;3
4、1摘要:,L.然后利用反馈线性化技术和Lyapunov方法,.关键词:;反馈线性化1IntroductionInrecentyears,thecontrolproblemsofnonlinearsys2temshavereceivedmuchattention.Robustcontrolofnonlinearsystemsisoneofthemaintopicsinthearea14.andI/Olinearization,therobustcontrolproblemsofaclassofnonlinearsystemsarestudiedintheframeofanalysisandsyn
5、thesis6,7.BasedontheLyapunovtheo2ry,therobuststabilizationandrobusttrackingofnonlin2earsystemswithparameteruncertainty,satisfyingthemismatchedandmatchedconditions,arediscussedintheliterature8,9InthesenseofL2-gain,thenonlinearHcontrolthe2oryisfoundedbasedontheHamilton-Jaccobiinequali2ties.Bydifferent
6、ialgameanddissipativetheory,theHcontrolproblemofnonlinearsystemscanbetrans2formedequivalentlyintothesolvabilityproblemoftheHamilton-Jaccobiinequalitiesornonlinearmatrixin2equalities,andtherobustcontrollerscanalsobecon2structedviathesolutionofinequalities.Buttheyalldidnotinvolvethegeneralexternaldist
7、urbancebecausethenecessaryassumptionstotheresultsaretoorigorousforgeneraldisturbance.ThispaperdealswiththerobustcontrolproblemsofaclassofnonlinearsystemswithL-boundeddistur2bance.Inthispaper,consideringthefactthatasuffi2cientlysmalldeviationfromtheidealcontrolobjectiveisoftenadmissible,therobuststab
8、ilizationandrobusttrackingproblemsarerespectivelydefinedinthesenseofL-norm.Inthepasttwodecades,animportantachievementintheresearchonnonlinearcontrolsystemsisthefounda2tionanddevelopmentofthedifferentialgeometricalmethod5.Throughfeedbacklinearization,nonlinear2Problemformulationandpreliminaries2.1Pro
9、blemformulationsystemsaretransformedintotheequivalentformsoflin2earsystems.Basedonthestate-feedbacklinearizationConsiderasingle-inputsingle-output(SISO)affine3Foundationitem:supportedbytheDoctorSubjectFoundation(2000053303)andNationalNaturalScienceFoundationofChina(693740147).Receiveddate:2000-10-23
10、;Reviseddate:2001-12-24.© 1994-2009 China Academic Journal Electronic Publishing House. All rights reserved. 370CONTROLTHEORYANDAPPLICATIONSVol.19nonlinearsystemx=f(x)+g(x)(w+u), y=h(x),nJ=supz.(1a)(1b)w(3)ThenthenonlinearsystemhasL-performanceifJforallwsatisfyingtheassumptionA1).wherexRisthest
11、ate,uRistheinput,wRisthedisturbance,yRistheoutput.f(x)andg(x)aretheknownsmoothfunctionswithcorrespondingdi2mensions.Thedisturbancewexistsintheinputchannel,andissupposedtosatisfythefollowingassumption:2.2ExactlinearizationConsiderthenominalsystemofthenonlinearsystem(1),whichisdescribedby(4a) =f(x)+g(
12、x)u,x(4b)y=h(x).Thestatespaceexactlinearizationproblemofthenonlin2earsystem(4a)and(4b)is:givenapointx0,findaneighborhoodUofx0,afeedbacku=(x)+(x)v(5)isdefinedonU,andatransformation=<(x)isalsodefinedonU,suchthatinthecoordinates=<(x)thecorrespondingclosedloopsystemxf(x)+x)g(x)(x)vis(6)(7a)(7b)A1)
13、ThedisturbancewisL-norm-bounded,i.e.wl,forL-norm.(2)wherelisaknownpositivevalue,andstandsTherobuststabilizationproblemisaddressedasfol2lows.Definition1Givenascalar>0,therobuststa2bilizationproblemofthenonlinearsystem(1)istode2signarobustcontrollawusuchthat:a)Whenthereisnodisturbancew,thenonlinear
14、systemisasymptoticallystableatthepointx0;+Bv,y=Cislinearandcontrollable,i.e.b)Whentherethew,thenonlinearsystemtothesetx|x-x0.()fx+g(x)(x)x()()gxxxx=<-1x=<-1(),=A()=B,Moreover,therobusttrackingproblemisaddressedbelow.h(x)x=<-1()=CforsomesuitablematrixARsatisfyingtheconditionn×nDefinitio
15、n2Givenascalar>0andareferenceinputyR(t),therobusttrackingproblemofthenonlin2earsystem(1)istodesignarobustcontrollawusuchthat:)Whenthereisnodisturbancew,theoutputyofathenonlinearsystemconvergesasymptoticallytothepre2scribedoutputyR(t)astimetendstoinfinity;)Whenthereexiststhedisturbancesatisfyingth
16、ebLnormcondition(2),thedifferencebetweentheout2putyofthenonlinearsystemandthereferenceinputyR(t)convergestothesete|e.Inordertosolvetheaboveproblems,anappropriatepenaltyoutputtoreflecttheinfluenceofdisturbanceisnecessary.Customarily,zisusedtodenoteit.Thedefi2nitionofL-performanceisintroducedasfollows
17、.andvectorBRnrankBABAn-1B=n.Lemma15Thestatespaceexactlinearizationproblemofthenonlinearsystem(4a)canbesolvedifandonlyifthereexistsasmoothfunction(x)suchthatthesystemx=f(x)+g(x)u,y=(x)hasrelativedegreen,i.e.ka)LgLf(x)=0forallxinaneighborhoodUofx0andall0k<n-1;r-1b)LgLf(x0)0.WhereLf(x)denotestheLied
18、erivativeof(x)alongf(x).kDefinition3Considerthenonlinearsystem(1).Foragivenpositivenumber,letLemma25Thestate-spaceexactlinearizationproblemofthenonlinearsystem(4a)canbesolvednear(x)functionforapoint,i.e.thereexistsan“output”whichthesystemhasrelativedegreenatx0,ifandonly© 1994-2009 China Academi
19、c Journal Electronic Publishing House. All rights reserved. No.3RobustControlofaClassofNonlinearSystemswithL-BoundedDisturbance371ifthefollowingconditionsaresatisfied:-2a)Thematrixg(x0)adfg(x0)adng(x0)fv=Kcontrolleru=(x)+(x)K<(x)(1).(13)stabilizesthesystem(7).Moreover,thecorresponding(14)adfadfn-
20、1g(x0)hasrankn;g(x)isinvolutivenearx0.b)ThedistributionD=spang(x)adfg(x)n-15Lemma3Ifnonlinearsystem(4)hasrelativestabilizesthenominalsystem(4)ofthenonlinearsystemdegreenatthepointx0,thenthereexistsacoordinatetransformationTakingthedisturbancewintoaccount,inthecoordi2nates=<(x),theclosed-loopnonli
21、nearsystem(1)withcontroller(14)canbeexactlylinearizedas=<(x)suchthatthesystemcanbetransformedintotheform: i=i+1,i=1,n-1,)+b()u, n=a(y=1,whereh(x)Lfh(x)(8a)(8b)(8c)holds: =(A+BK)+Bw,y=C(15a)(15b)w.Thenthefollowingexpressionwherew=b(wkl.Constructadynamicmodelofthe<(x)=1Ln-h(x)fnLf,(9a) =(A),(16a
22、)(16b)<(x0),thenitisobviously()x=<-1(isequaltothestatexofthenonlinearsystem(1)intheidealcasewithoutdisturbancew.Choose-1)z=x-<()=a(h(x),n-1)Lb(Letu=h(.-1LgLnh(fx)-Lfnh(x)+v.(10)(17)asthepenaltyoutputfortherobuststabilizationproblembecauseiteffectivelyreflectsthedeviationofthestatexfromtheid
23、ealcase,resultingfromthedisturbancew.Thentheclosed-loopsystembecomesalinearcontrol2lablesystemoftheform(7),wherethematricesA,BandCareBasedontheLyapunovtheory,thefollowingproposi2100100A=0000000000T10tioncanbeobtained.,B=,C=.100010(11)Proposition1Givenpositivenumber>0,forthenonlinearsystem(1)satis
24、fyingtheassumptionsA1)-1)ofthecoor2andA2),supposetheinversemap<(dinationtransform=<(x)satisfiestheLipschizscon2ditionBesidestheassumptionsA1),thefollowingassumptionissupposedtoholdthroughoutthepaper:)k,wherekisapositiveconstant.A2)b(A3)<-1(x)-<-1(y)Lx-y.Thenthecontrolleru2=TT,-kl,BPe0and
25、eTBPe3Mainresults3.1Robuststabilization0,otherwise(18)Accordingto5,thereexiststhefollowinglemma.5Lemma4IfthereexistsamatrixKsuchthatthefollowinginequalityTP(A+BK)+(A+BK)P<0=(12)2L2,e=<(x)-,maxholds,wherePisapositivedefinedmatrix,thenthecontrollersuchthatthesystems(1a),(16a)and(17)havetheL-perf
26、ormance.© 1994-2009 China Academic Journal Electronic Publishing House. All rights reserved. 372CONTROLTHEORYANDAPPLICATIONST-22ePe=Lmin,areincludedintheset2Vol.19InordertoproveProposition1,weintroduceaprop2ertyoftheEuclidnorm.nnLemma5SupposethevectorxR,yRandtheanglebetweenthevectorxandyis.Then
27、x-xyxTy=xycosy.e|e.2LmaxAccordingto(20),foralleinthesete|e22Lmax(19)4Definition4Givenaset=<(t,x,w)|wW,tR+,whereWistheadmissibledisturbanceset.isinvariantforthesystem(1)ifforallwWandx,<,(e)0.ThismeansthatattheedgepointsofthereisVT-22Te|ePeLmin,thevalueofV(e)=ePe(t,x,w).willdecrease.Thus,forthec
28、losed-loopsystem(1a),(16a)and(17)withthecontroller(18),eTPe-22Lzminalwaysholds.Thenthesetz|BasedonLemma5,Proposition1canbeprovedasfollows.ProofofProposition1Obviously,toprovetheProposition1isequivalenttoprovingthat,withthecon2trollawu,thesetz|zisaninvariantsetforallw,eand.isaninvariantsetfortheclose
29、d-loopsystem.There2fore,thepropositionisproved.BasedonLemma3and1,thefollowingbeByusingLemma5,wehavezzL<()L22minForsystem(1)anda,ifthesystemsatisfiestheassump2),A2)andA3),therobuststabilizationprob2T2e2minlemofthedefinition1canbesolvedbythecontrolleru=u1+u2=(x)+(x)K<(x)+u2,(21)whereePe).Sothesu
30、fficientconditionthatthesetz|zisaninvariantsetisthat,withthecontroller(18),T-22ePeLmin =(A+BK),T(22a)holdsforallw,eand.NowconsiderthetimederivativeofthequadraticfunctionV(e)=eTPe,i.e.(e)=eP(A+BK)+(A+BK)Pe+VTT,-kl,BTPe0andeTBPeu20,otherwise.(22b)2ePB(w+u2).By(12),thereiseTP(A+BK)+(A+BK)TPe0.FromLemma
31、5,itcanbeobtainedthatePBwePBw=ePBkl.Takingtheformofthecontroller(18)intoaccount,wecanconcludethatforallesatisfyinge,ePBu2-klTTTTTxdenotesthestateofcertainnonlinearsystem(1),and(0)=<(x0),=2,2Lmaxe=<(x)-.ProofCorrespondingtothedefinition,theproofisdividedintotwoparts:a)Thefirstistoconsiderthecas
32、eofw=0.Bythe)ofDefinition2isobvious;lemma,thepartaTTBPeePBBPeTTb)Thesecondistoconsiderthecaseofw0andsatisfiestheassumptionA1).Accordingtotheabovelemmas,asymptoticallyconvergestotheorigin,which(20)convergestotheorigin.ByProposi2impliesthat<-1()tion1,xisalwayskeptinthesetx|x-<-1()ofDefi2).Sothep
33、artb,whosecenteris<-1(-klePB0.Then,forallesatisfyinge,(e)0.VBecauseeTPe22maxe,theedgepointsofT-22e|ePeLmin,i.e.thepointssatisfying© 1994-2009 China Academic Journal Electronic Publishing House. All rights reserved. No.3RobustControlofaClassofNonlinearSystemswithL-BoundedDisturbance373nition2
34、holds.where(0)=h(x0)h(1)(x0)h(n-1)(x0),andThenTheorem1isproved.3.2RobusttrackingA,B,Caretakenasin(11).Clearly,becauseofthefeedbackequivalence,thedynamicbehaviorofmodel(27)isequivalenttothedynamicbehaviorofthenomi2nalsystem,i.e.theidealcasewithoutdisturbancew.Sotheerrorbetweenthepracticaloutputofthes
35、ystemandtheoutputoftheartificialnominalsystem,canberepresentedbythedynamicmodel,(28) =(A+BK)e+Bwe,wheree(0)=0.Choosez=easthepenaltyoutput.Proposition2Givenapositivenumber>0,thecontroller(23a)(23b)T,-kl,BPe0andeTBPeu2TGivenareferenceinputyR(t),fortheI/Olinearizedsystem(7)ofthenominalsystem(4),intr
36、oducethetrajectoryerror(t)asthedifferencebetweentherealoutputandthereferenceoutputyR(t),i.e.1(t)(t)=2(t)n(t)thenthesystem(7)becomes=1-yR(t)(1)2-yR(t)(n-1)(t)n-yR+Bv, =Ay=1.Sohereistheresult.0,otherwise.(29)22max5Lemma6ForagivenreferenceinputyR(t),itassumes:a)Thereexiststhe(n-1)-thordertimederivative
37、yR(t);thesystemb)Theoutputy(t)inn.Then,thesolvedbythecon2trolleru1=)b(e=(A+BK)e+Bw +Bu2,z=e,(30a)(30b)wheree(0)=0,satisfiestheL-performancez(-a()+yR(n)-K),(24)whereK=k0k1kn-1satisfiesthatallrootsoftheequationsn+kn-1sn-1+k1s+k0=0aretakenasinLemma3.(25)andb()lieintheleft-halfcomplexplane,anda(.HereKis
38、takenasinLemma6.ProofTheproofissimilartotheproofofProposi2tion1,andthereforeisomittedhere.Hereistheresults.Theorem2Foragivenvalue>0andareferenceinputyR(t),iftheassumptionsinLemma6aresatis2fied,thentherobusttrackingproblemcanbesolvedbythecontrollerThroughI/Olinearization,thenonlinearsystemwiththec
39、ontroller(24)hasthefollowingform:+B =A,y=Cholds:(n)yR+K(-(1)yRyR(2)yR(n-1)yR)+Bw,(26a)(26b)Tu=u1+u2=n)(-Lfnh(x)+y(+u2),(31)-KRn-1LgLfh(x)where)w.Thenthefollowingexpressionwherew=b(=-yRy(R1)y(R2)y(Rn-1)T,=h(x)h(1)(x)h(n-1)(x),+By(Rn)+K(-yRy(R1)y(R2)y(Rn-1)T), =A(32a)e=-,Twkl,where(0)=h(x0)h(1)(x0)h(n
40、-1)(x0),andA,B,Caretakenasin(11).Constructadynamicmodelasfollows:+By(Rn)+K(-yRy(R1)y(R2)y(Rn-1)T), =A(27a)(32b)T,-kl,BPe0andeTBPeu20,otherwise.(32c),yn=C(27b)© 1994-2009 China Academic Journal Electronic Publishing House. All rights reserved. 374CONTROLTHEORYANDAPPLICATIONSVol.19(0)=h(x0)h(1)(x
41、0)h(n-1)(x0),=22whereu2(x)=,17.962331.460023.8069<(x)-22Lmax.max-2exp(2)xdenotesthestateofuncertainnonlinearsystem(1),KistakenasinProposition2.if<(x)-=2×0.3×0.1=0.06ProofTheproofissimpleandisomitted.4ExampleConsidertheuncertainnonlinearsystem(1)withtheformx3f(x)=2x1+x2+x3,g2(x)=2and1
42、7.962331.460023.8069<(x)-0,otherwiseu2(2)=0.exp(x2)exp(x2).(33)x1-x2Thesimulationshowsthatthestabilizingcontrollerofnominalsystemisunabletostabilizetheuncertainsys2teminFig.1,andFig.2showsthattherobustcontroller(41),designedbyTheorem1,isvalid.ItverifiesthecorrectnessofTheorem1.Theorem2canalsobepr
43、ovedbysimulationinasimilarway.Supposethattheinitialstateis123andthedistur2banceisw=sin(t).gin000.(34)Thecontrolobjectiveistostabilizethesystemattheori2Forthenominalsystem(4)of(1),thecoordinatex3=<()=ItiseasytogetbycalculationL=0.5,x1-x2-x1-x.(35)(36)(37)a(x)=-x1-x2-2x23,b(x)=-2exp(x2).Thenthesyst
44、em(4)islinearizedasthesystem(7).Forthesystem(7),astabilizingcontrollerisv=-1-3-3andthepositivedefinedmatrix(38)83.1578P=60.5567136.36631.460017.31.460023.(39)60.556717.96235ConclusionsInpractice,duetotheinfluenceoftheuncertainfac2torssuchasdisturbance,asmalldeviationtotheidealstateisoftenpermissible
45、.Correspondingly,inthestabi2lizationproblem,thestateisoftenpermittedtoswinginasmallneighborhoodoftheexpectedequilibriumpoint.Similarly,inthetrackingproblem,asmalltrackinger2rorispermitted.Basedontheseviews,therobuststabi2lizationproblemandrobusttrackingproblemaredefinedrespectivelyintheframeworkofLn
46、orm.satisfiestheinequality(12).ByTheorem1,supposethepermissibleL-perfor2manceis0.1,thenarobuststabilizingcontrolleris010-301,-(40) =u(x)=-1b(x)-a(x)+-1-3-3<(x)+u2(x),(41)© 1994-2009 China Academic Journal Electronic Publishing House. All rights reserved. No.3RobustControlofaClassofNonlinearS
47、ystemswithL-BoundedDisturbance375Onthebasisofthetechniqueofexactlinearization,thispaperhasdiscussedtherobustcontrolofaclassofSISOaffinenonlinearsystemswithL-boundeddistur2bances,andcorrespondingrobustcontrollershavebeenobtained.Inthefinalpartofthepaper,asimulationhasbeencarriedbyMATLABandSIMLINK,whi
48、chillus2tratesthecorrectnessoftheresults.Clearly,theresultsinthepapercanfurtherbegeneralizedtothecaseofMI2MOnonlinearsystems,andthecaseswithmoreuncer2tainties,butfurtherresearchisneeded.References1VanDerSchaftAJ.L2-gainanalysisofnonlinearsystemsandnon2linearstatefeedbackHcontrolJ.IEEETrans.Automatic
49、Con2trol,1992,37(6):770-7842ShenTLandTamuraK.RobustHcontrolofuncertainnonlinearsystemsviastatefeedbackJ.IEEETrans.AutomaticControl,nonlinearsystemsJ.IEEETrans.AutomaticControl,1997,42(12):1662-16685IsdoriA.NonlinearControlSystemsM.2ndedition.Berlin:Springer-Verlag,19896WuM,PengZH,TangZH,etal.analysi
50、sandsynthesisfornonlinearrobustcontrolsystemsJ.J.ofCentralSouthUniversityofTechnology,1998,5(1):68-737PengZH,WuMandCaiZX.I/Olinearizationbasedonsynthe2sisfornonlinearrobustcontrolsystemsA.Proceedingof14thIFACConferenceC,Beijing,China,1999,117-1228LiuYJandQinHS.Globalstabilizationviadynamicoutputfeed
51、2backforaclassofuncertainnonlinearsystemJ.ControlTheoryandApplications,1999,16(6):830-8359HashimotoY,WuHSandMizukamiK.RobustoutputtrackingofnonlinearsystemswithmismatcheduncertaintiesJ.Int.J.Con2trol,1999,72(5):411-417本文作者简介吴敏见本刊2002年第2期第.张凌波2.,.1989年赴英国曼彻斯特大,并先后在英国约克大学、谢非尔德大学,现为英国诺丁汉大学高级讲师.研究领域为:先进控制理论及应用,过程控制,鲁棒控制和网络控制等.1995
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年青海省中考英语试卷(含答案与解析)
- 小班爱国知识题目及答案
- 常宁二中分班考试试卷及答案
- 叉车专项培训考试试卷及答案
- 测血压临床技能考试题及答案
- 线代复试题目及答案
- 咸鱼之王挑战题目及答案
- 餐饮美学基础考试题库及答案
- 物态变化试题及答案分析
- 企业内训师选拔及培养体系框架
- JG/T 153-2012上滑道车库门
- T/CACEM 22.1-2022校车运营服务管理第1部分:基本要求
- 虚拟货币挖矿项目投资管理合作协议
- 2025届河北省石家庄市桥西区数学八下期末检测试题含解析
- 《肾母细胞瘤》课件
- 浙江省G5联盟2024-2025学年高二下学期期中考试物理试题(含答案)
- 2025年苦荞可行性报告()
- 2025年法院书记员招聘考试笔试试题(50题)附答案
- 农村公路养护培训
- 焊接动火施工方案
- 北京2025年国家心理健康和精神卫生防治中心招聘专业技术人员笔试历年参考题库附带答案详解
评论
0/150
提交评论