




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1.整式乘法有几种形式整式乘法有几种形式? (1)单项式乘以单项式单项式乘以单项式 (2)单项式乘以多项式单项式乘以多项式: a(m+n)=am+an (3)多项式乘以多项式多项式乘以多项式: (a+b)(m+n)=am+an+bm+bn 2.乘法公式有哪些乘法公式有哪些? (1)平方差公式平方差公式: (a+b)(a-b)=a2-b2 (2)完全平方公式完全平方公式: (ab)2=a22ab+b2 3.试计算试计算: (1) 3a(a-2b+c) (2) (a+3)(a-3) (3) (a+2b)2 (4) (a-3b)2解解: (1) 3a(a-2b+c) =3a2-6ab+3ac (2)
2、 (a+3)(a-3)=a2-9 (3) (a+2b)2=a2+4ab+4b2 (4) (a-3b)2= a2-6ab+9b2计算下列个式:(1) 3x(x-1)= _(2) m(a+b+c) = _(3) (m+4)(m-4)= _(4) (x-3)2= _(5) a(a+1)(a-1)= _根据左面的算式填空:(1) 3x2-3x=_(2) ma+mb+mc=_(3) m2-16=_(4) x2-6x+9=_(5) a3-a=_ 议一议议一议 由由a(a+1)(a-1)得到得到a3-a的变形是什的变形是什么运算么运算? 由由a3-a得到得到a(a+1)(a-1)的变形与它的变形与它有什么不
3、同有什么不同?答答:由由a(a+1)(a-1)得到得到a3-a的变形的变形是整式乘法是整式乘法,由由a3-a得到得到a(a+1)(a-1)的变形与上面的变形互为逆过的变形与上面的变形互为逆过程程.因式分解定义因式分解定义把一个多项式化成几个整式把一个多项式化成几个整式积的形式积的形式, ,这种变形叫做把这种变形叫做把这个多项式这个多项式分解因式分解因式. . 想一想想一想: 分解因式与整式乘法有何关系分解因式与整式乘法有何关系?分解因式与整式乘法是互逆过程分解因式与整式乘法是互逆过程练习一 理解概念判断下列各式哪些是整式乘法判断下列各式哪些是整式乘法?哪些是因式分解哪些是因式分解? (1).x
4、2-4y2=(x+2y)(x-2y) (2).2x(x-3y)=2x2-6xy (3).(5a-1)2=25a2-10a+1 (4).x2+4x+4=(x+2)2 (5).(a-3)(a+3)=a2-9 (6).m2-4=(m+4)(m-4) (7).2 R+ 2 r= 2 (R+r)因式分解因式分解整式乘法整式乘法整式乘法整式乘法因式分解因式分解整式乘法整式乘法因式分解因式分解因式分解因式分解.规律总结 分解因式与整式乘法是互逆过程分解因式与整式乘法是互逆过程. 分解因式要注意以下几点分解因式要注意以下几点: 1.分解的对象必须是多项式分解的对象必须是多项式. 2.分接的结果一定是几个整式的
5、分接的结果一定是几个整式的乘积的形式乘积的形式. 3.要分解到不能分解为止要分解到不能分解为止.辨别下列运算是不是因式分解辨别下列运算是不是因式分解,并说明理由并说明理由.).2)(2(4.4.2)3(23.3).2(336.2.84)2(4.1222232aaaxxxxxaxaxaxbaabaa( )( )( )( )不是不是不是不是是是是是 多项式中各项都含有的相同因式,叫做这个多项式的公因式。mcmbma相同因式m这个多项式有什么特点?应提取的公因式为应提取的公因式为:_:_议一议:多项式有公因式吗?是什么?2336ax yx yz 233ax ya x x y 362 3x yzx x
6、 x y z 23x y公因式的确定方法:公因式的确定方法:应提取的公因式的是:各项系数的最大公约数与应提取的公因式的是:各项系数的最大公约数与各项各项都含有的相同字母的最低次数幂的积。都含有的相同字母的最低次数幂的积。例: 找 3 x 2 6 xy 的公因式。系数:最大公约数。3字母:相同的字母x 所以,公因式是3x。指数:相同字母的最低次幂1练一练:多项式多项式公因式公因式232515ab cb c 3223410a ba b c 2ab 2()ab25b c 25()b c222a b 222()a b因式分解结果224a babc 应提取的公因式的是:各项系数的最大公约数与应提取的公因
7、式的是:各项系数的最大公约数与各项各项都含有的相同字母的最低次数幂的积。都含有的相同字母的最低次数幂的积。2ac 3abc 25abc 正确找出多项式各项公因式的关键是:1、定系数:公因式的系数是多项式各项系数的最大公约数。 2、定字母: 字母取多项式各项中都含有的相同的字母。 3、定指数: 相同字母的指数取各项中最小的一个,即字母最低次幂 你知道吗?找一找: 下列各多项式的公因式是什么? (3)(a)(a2)(2(m+n))(3mn)(-2xy)(1) 3x+6y(2)ab-2ac(3) a 2 - a 3(4)4 (m+n) 2 +2(m+n)(5)9 m 2n-6mn (6)-6 x 2
8、 y-8 xy 2 如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。 ( a+b+c )ma+ mb +mcm=(1) 8a3b2 + 12ab3c例1: 把下列各式分解因式分析:提公因式法步骤(分两步) 第一步:找出公因式; 第二步:提取公因式 ,即将多项式化为两个因式的乘积。(2) 2a(b+c) - 3(b+c)注意:公因式既可以是一个单项式的形式, 也可以是一个多项式的形式整体思想是数学中一种重要而且常用的思想方法。把12x2y+18xy2分解因式解:原式 =3xy(4x + 6y) 错误公因式没有提尽
9、,还可以提出公因式2注意:公因式要提尽。诊断正确解:原式=6xy(2x+3y)当多项式的某一项和公因式相同时,提公因式后剩余的项是1。错误注意:某项提出莫漏1。解:原式 =x(3x-6y)把3x2 - 6xy+x分解因式正确解:原式=3x.x-6y.x+1.x =x(3x-6y+1)提出负号时括号里的项没变号错误诊断把 - x2+xy-xz分解因式解:原式= - x(x+y-z)注意:首项有负常提负。正确解:原式= - (x2-xy+xz) =- x(x-y+z)看你能否过关?把下列各式分解因式:(1)8 m2n+2mn(2)12xyz-9x2y2(3)p(a2 + b2 )- q(a2 +
10、b2 ) (4) -x3y3-x2y2-xy 例2 把 12b(a-b)2 18(b-a)3 分解因式解: 12b(a-b)2 18(b-a)3 =12b(a-b)2 + 18(a-b)3 =6(a-b)2 2b+3(a-b) =6(a-b)2 (2b+3a-3b) =6(a-b)2(3a-b)练习:(x-y)2+y(y-x)(1) 13.80.125+86.21/8(2)已知a+b=5,ab=3,求a2b+ab2的值. 解:原式=13.80.125+86.20.125 =0.125(13.8+86.2) =0.125100 =12.5 解: a2b+ab2 =ab(a+b)=3 5=15巧妙
11、计算)(解:原式19999 99 99 + 99 )(解:原式1575131259)(解:原式1575131259=259 =9900157259512593125915725951259312591572595125931259(1)99299(2)= 99 (99+1)2、确定公因式的方法:小结3、提公因式法分解因式步骤(分两步):1、什么叫因式分解?(1)定系数 (2)定字母 (3)定指数第一步,找出公因式;第二步,提取公因式.4、提公因式法分解因式应注意的问题:(1)公因式要提尽; (2)小心漏掉1;(3)提出负号时,要注意变号. 记住哟!1、计算(-2)101+(-2)1002、已知
12、, , 求代数式 的值。42 yx3xy222xyyx例1:确定下列多项式的公因式,并分解因式( )32126 xx( )332315 pqp q( )4369ababxaby( )23482 xaxx提取公因式法的一般步骤提取公因式法的一般步骤:(1 1)确定应提取的公因式)确定应提取的公因式(2 2)多项式除以公因式,所得的商作为另一个因式)多项式除以公因式,所得的商作为另一个因式(3 3)把多项式写成这两个因式的积的形式)把多项式写成这两个因式的积的形式练一练:分解因式32(1)32() aaaa 32(2)1022 () 6pppp 2321aa2351pp练一练:分解因式2(1) 3
13、9 xxy 2(2) 36 mxnx 2(3)2102 ab4a bab例2:分解因式22() abab括号前面是“+”号,括到括号里的各项都不变号;括号前面是“”号,括到括号里的是各项都变号。添括号则:下面的分解因式对吗?如果不对,应怎样改正?( )()( )()( )()( )()xxxxxxa ca ca cacssss ssa babaab aba 232232322221 23232 3632324624644682238()xxx 2231()aac 2312()s ss2232()baab 22342将下列各多项式因式分解将下列各多项式因式分解: :.51520. 3.3. 2.
14、 12222xyxyyxxyyxaayax. 提取公因数后提取公因数后,括号内的多项式的项数与括号内的多项式的项数与原多项式的项数相同原多项式的项数相同. 利用整式的乘法来检验因式分解是否正确利用整式的乘法来检验因式分解是否正确.、下列各式均用提取公因式法因式分解、下列各式均用提取公因式法因式分解,其中其中正确的是正确的是( )A. 6(x2) x(2x)=(x2)(6x)B. x33x2x=x(x23x)C. a(ab)2ab(ab)=a(ab)D. 3xn16xn=3xn(x2)D灵活运用灵活运用:2、m2(a2) m(2a)分解因式等于()分解因式等于()A. (a2)(m2m) B.
15、m(a2)(m1)C. m(a2)(m1) D.以上答案都不对以上答案都不对C3、下列各式正确的是()、下列各式正确的是()A. (xy)2n=(yx)2n(n为正整数为正整数)B. 整式整式x210可分解为可分解为(x3)(x3) 1C. 整式整式xy(yx)2可分解为可分解为(xy)(1yx)D. a(x2) b(2x)=(x2)(ab)D4 、(ab)3(ba)2=(ab)2_.(ab1)5 、分解因式分解因式18m2n(ab)2 9mn2(ba)=_.9mn(ab)(2ma2mbn)6、分解因式:、分解因式:4xmynb6xm1yn22xm2yn1a(xyz) b(zxy) c(xzy)(5x2y)2 (2x5y)2解:原式解:原式2xmyn(2b3xy2x2y)解:原式解:原式(xyz)(abc)解:原式解:原式25x220 xy4y24x220 xy25y2 29x229y2 29(x2y2)拓展运用拓展运用:1.已知已知1xx2x3=0.求求xx2x3x4x2000的值的值.解:原式解:原式x(1xx2x3) x5(1xx2x3) x1997(1xx2x3) 03.试说明试说明:817279913能被能被45整除整除.解:解:原式原式(34)7 (33)9
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 纸张微纳米结构加工考核试卷
- 聚丙烯酸甲酯溶液纺丝考核试卷
- 新能源汽车维护与故障诊断(微课版)教案 4.2.1仪表显示剩余电量异常故障诊断与排除;4.2.2车辆充电异常故障诊断与排除
- 理解并运用有效的反馈技巧考核试卷
- 禽类罐头加工过程中的食品安全宣传与教育考核试卷
- 糖果企业生产调度与物流配送考核试卷
- 卫生陶瓷洁具的生态设计理念与实践考核试卷
- 珠海三中高一下学期期中考试英语试题
- 江西航空职业技术学院《产品交互设计》2023-2024学年第二学期期末试卷
- 宁夏艺术职业学院《中央银行学与金融监管》2023-2024学年第二学期期末试卷
- 河南省开封市铁路中学2023-2024学年八年级下学期6月期末历史试题
- CJT165-2002 高密度聚乙烯缠绕结构壁管材
- 驾驶员交通安全培训及考试试题
- 3货物接取送达运输协议
- 2024年浙江杭州市林水局所属事业单位招聘拟聘人员招聘历年高频考题难、易错点模拟试题(共500题)附带答案详解
- DB35T 2094-2022 公路工程竣(交)工验收质量检测技术规程
- STEM教育理念下大班科学活动的指导策略研究
- 财务咨询顾问协议样本
- 《物流成本管理 第4版》各章思考题及习题答案
- (2024)全科医学医师考试试题及答案
- 一次性保洁合同空白范本范本正规范本(通用版)
评论
0/150
提交评论