




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Angewandte1GDChEineZeitschriftderGesellschaftDeutscherChemikerChemiewww.angewandte.deAkzeptierterArtikelTitel:Self-AdjustingMetal-OrganicFrameworkforEfficientCaptureofTraceXenonandKryptonAutoren:ZhengNiu,ZiwenFan,TonyPham,GauravVerma,KatherineA.Forrest,BrianSpace,PraveenK.Thallapally,AbdullahM.Al-En
2、izi,andShengqianMaDieserBeitragwurdenachBegutachtungundUberarbeitungsofortalsakzeptierterArtikel(AcceptedArticle;AA)publiziert.DiedeutscheUbersetzungwirdgemeinsammitderendgultigenenglischenFassungerscheinen.DieendgiiltigeenglischeFassung(VersionofRecord)wirdehestmoglichnachdemRedigierenundeinemKorre
3、kturgangalsEarly-View-BeitragerscheinenundkannsichnaturgemafivonderAAFassungunterscheiden.LesersolltendaherdieendgultigeFassung,sobaidsieveroffentlichtist,verwenden.FurdieAA-FassungtragtderAutordiealleinigeVerantwortung.Zitierweise:Angew.Chem.Int.Ed.2022,e202117807LinkzurVoR:https:/doi.Org/10.1002/a
4、nie.202117807WlLEY-VCHWlLEY-VCHCOMMUNICATIONSelf-AdjustingMetal-OrganicFrameworkforEfficientCaptureofTraceXenonandKryptonZhengNiu,*(aZiwenFan,同TonyPham,同GauravVerma,【加KatherineA.Forrest,对BrianSpace,回PraveenK.Thallapally,*IclAbdullahM.Al-Enizi,mShengqianMa*bla ZiwenFanandProf.Z.NiuCollegeofChemistry,
5、ChemicalEngineeringandMaterialsScience.SoochowUniversity,Suzhou215123,PeoplesRepublicofChinaE-mail:zhenaniuOb Dr.G.VermaandProf.S.MaDepartmentofChemistry,UniversityofNorthTexas.Denton,Texas76201.UnitedStatesE-mail:Shenaaian.MaunLeduc PraveenK.ThallapallyPhysicalandComputationalScienceDirectorate.Pac
6、ificNorthwestNationalLaboratory.Richland,Washington99354,UnitedStatesE-mail:praveen,thallaDallyDnnl.aovd Dr.T.PhamandDr.K.A.ForrestDepartmentofChemistry.UniversityofSouthFlorida,4202E.FowlerAvenue.Tampa.Florida33620,UnitedStatese Prof.B.SpaceDepartmentofChemistry,NorthCarolinaStateUniversity,2700Sti
7、nsonDr.,Raleigh,NC27607,UnitedStatestProf.A.M.Al-EniziDepartmentofChemistry,CollegeofScience,KingSaudUniversity,Riyadh11451,SaudiArabiaSupportinginformationforthisarticleisgivenviaalinkattheendofthedocument.usedtoseparateXeandKrfromnuclearreprocessingoff-gas,171whichisenergy-intensiveanduneconomic.A
8、lternatively,porousmaterialscancaptureXeandKrfromnuclearreprocessingoff-gaswithgreaterenergyefficiency.Amongvarioustypesofporousmaterials,metal-organicframeworks(MOFs)exhibitsuperiorXeandKrcaptureperformance(81comparedtoporousorganiccagecompoundsandtraditionalporousmaterialsincludingsilver-loadedzeo
9、litesandactivatedcarbons.冏ReportedMOFsforcapturingXeandKrcanbegroupedasa)rigidframework,whichexhibitsnosignificantstructuralchangeaftergasfilling(Scheme1A);andb)flexibleframework,whichexhibitsprofoundstructuralchangeaftergasfilling(Scheme1B).Therigidframeworkwithappropriatelysizedporecanaccommodatet
10、heXe/Kratomsbutthefine-tuningofporesizeisnotaneasytask.SomeflexibleMOFsshowthebreathingeffectsafterfillingwithXeorKrmoleculesandthusrealizetheseparationofXeandKr.”However,sincethebreathingeffecthasthethresholdconcentrationtothetargetgas,itisdifficulttobeappliedtothecaptureoftraceamountsofXeandKr.Abs
11、tract:Thecaptureofthexenonandkryptonfromnuclearreprocessingoff-gasisessentialtothetreatmentofradioactivewaste.AlthoughvariousporousmaterialshavebeenemployedtocaptureXeandKr,thedevelopmentofhigh-performanceadsorbentscapableoftrappingXe/Kratverylowpartialpressureasintheinthenuclearreprocessingoff-gasc
12、onditionsremainschallenging.Herein,wereportaself-adjustingmetal-organicframeworkbasedonmultipleweakbindinginteractionstocapturetraceXeandKrfromthenuclearreprocessingoff-gas.Theself-adjustingbehaviorofATC-Cuanditsmechanismhavebeenvisualizedbythein-situsingle-crystalX-raydiffractionstudiesandtheoretic
13、alcalculations.Theself-adjustingbehaviorendowsATC-Cuunprecedenteduptakecapacitiesof2.65and0.52cm3g1forXeandKrrespectivelyat0.1barand298K,aswellastherecordXecapturecapabilityfromthenuclearreprocessingoff-gas.OurworknotonlyprovidesabenchmarkXeadsorbentbutproposesanewroutetoconstructsmartmaterialsforef
14、ficientseparations.inrr解盗FlexibleframeworkSelf-adjustingframeworkiau”3vvv/ivvvxyjjculauaiivvv/iivv/traceXeandKrfromthenuclearreprocessingoff-gas.AsillustratedinScheme1C,differentfromtherigidframeworkandflexibleframework,theporesoftheself-adjustingframeworkcanPursuingthebalancebetweenenergydemandandt
15、heenvironmentisanemergingissueinourgeneration.111Albeitconfrontedwithsomenegativecriticisms,nuclearpowergenerationhaspreventedabout1.84millionairpollution-relateddeathsandreducedCO?emissionsby64billiontonsfromsupplementingfossilfuels.Therapidgrowthofnuclearindustrieshasgeneratedtonsofassociatedhigh-
16、levelradioactivewastewhichmustbesafelysequestered;otherwiseitwouldcauseseriousenvironmentalissues.131Inthetreatmentofnuclearfuelwastes,gaseousradioactivekryptonandxenonaredifficulttocapturecomparedwithotherspecies.141Forgaseousradioactivekryptonandxenon,thelonghalf-lifeof85Kr(t”2*10.8years)urgesitss
17、eparationandcapturefromtheoff-gastoavoidradioactivecontamination,whiletheradioactive135Xecancaptureaneutrontotransmutetostable136Xe,whichcanbeusedinthefieldfromlighting,laser,medicalimagingtoanaesthesia.151Furthermore,thecaptureofXeinthetreatmentofnuclearfuelwastecansignificantlylowerthepriceoftheXe
18、sincetheconcentrationofXeinthenuclearfissiongasis4500timeshigherthanintheatmosphere.161Currently,cryogenicdistillationtechnologyismostly1smartlyadjusttheirporesizeforthetargetgases,andremainunchangedforothergases.Inthisregard,wechooseanalkylporousMOF,anhydrousCu2(ATC)(denotedbyATC-Cu),(121whichhasas
19、emi-rigidframeworkandincludestwotypesofhydrogenrichcavities.TheframeworkofATC-Cucanadjustitsporestoaccommodatethetargetgases(Xe/Kr)yetremainunresponsivetothemaingasesofnuclearreprocessingoff-gas(N2andO2)atnormalpressureandtemperature.Takingadvantageoftheself-adjustingbehavior,ATC-Cudemonstratesthere
20、cordXeandKruptakecapacityat0.1barand298K,aswellasthebenchmarkXecapturecapabilityinthenuclearreprocessingoff-gas.ATC-Cuwassynthesizedaccordingtotheliteraturewithminormodifications(SeeSI).AsshowninFigure1A,fourCupaddlewheelsecondarybuildingunits(SBUs)wereconnectedbytheATCligandtoconstructa4,4-coordina
21、tednet.TheframeworkofATC-CuincludesCu-openmetalsitesandtwotypesofhydrogenrichpolyhedroncavities,CavityI(green)andCavityII(purple).ThesymmetrycenterofCavityIandthemidpointofC4axisofCavityIIaredefinedasthecentersofCavityIandII,respectively.Theaveragedistancebetweenthecenterandtheatomonthevertexofthepo
22、lyhedroncavity(denotedas(C-V)avhereafter)is3.90Aand3.85AforCavityIandII,respectively.CavityIhastwelveHatoms,whileCavityIIhaseightHatomsandeightoxygenatoms.(Figure1B)ThePXRDpatternoftheassynthesizedATC-Cusampleagreeswellwiththecalculatedpatternfromthesinglecrystaldata.Furthermore,theTAGdatarevealedth
23、atATC-Cuisstabletill270C.TheBrunauer-Emmett-Teller(BET)surfaceareaofATC-Cuisabout600m2g_1(Langmuirsurfacearea:667m2/g),whichwascalculatedfromtheN2sorptionisothermsat77K.Thegas-loadedsingle-crystalX-raydiffraction(SCXRD)experimentswereperformedtodetecttheimpactofN2,O2,Xe,andKrontheATC-Cuframework.113
24、1AfterexposingintoN2orO2atmosphereat298Kand1barfor12h,thecavitiesinATC-Curemainunchanged,indicatingthattheframeworkofATC-CushowsrigiditytowardN2andO2presumablyduetotheveryweakinteractions.However,afterloadingXetoATC-Cuunderthesamecondition,significantchangesoftheATC-Cuframeworkwereobserved.Different
25、fromtheO2andN2molecules,therelativelystrongerinteractionbetweenXeandH/OatomsonthecavitiesofATC-CumakethepartsofthecavitiesintheATC-CuframeworkcanshrinkandsmartlyfitXeatoms,andtherestcavitiesintheframeworkareenlargedtobalancetheinnerstressofthecrystal.AsshowninFigure1CandD,Xeatomsarelocatedatthecente
26、rofthecavitiesornearby.Comparedwith(C-V)avofCavityI,theaveragedistancebetweenXeandtheatoms(denotedas(Xe-V)avhereafter)onCavityIAandIIAdecreasesfrom3.90Ato3.67Aand3.75Arespectively.Meanwhile,theshapeoftheCavityIAandIBexhibitsthesignificantchanges:thelengthofCavityIchangesfrom6.24Ato5.53Aand6.77AforCa
27、vityIAandIBrespectively.(Figure1C)ThesimilarselfadjustingbehaviorcanalsobeobservedatCavityIBandIIB,yetthe(Xe-V)avofCavityIIBincreasesfrom3.85A(C-V)”ofCavityII)to3.94A.(Figure1D)AlthoughtheuptakeamountofKrinATC-CuislessthanthatofXe,wealsocanobservetheKratomsleadthechangeoflengthofcavities,whichindica
28、testhatthesimilarinteractionsasXe.(SchemeS1)Consequently,ATC-Cuexhibitstheself-adjustingbehaviorforXeandKr,whileexhibitingunresponsivetoN2andO2.Theaboveself-adjustingbehaviormaybeattributedtotheinteractionsbetweenXe/Kratomsandframeworkcausedlocaldynamics.Figure1.(A)ThecavitiesintheframeworkofATC-Cu;
29、(B)TheenlargedviewofCavityIandII;Thechangeofthe(C)CavityIand(D)cavityIIafteradsorbingN2,O2,andXe.(TheblueballinCavityIandIIstandforthecenterofthecavities,andthegoldballinCavityIA,IB,IIAandIIBstandfortheSCXRDdeterminedlocationofXeinATC-Cu).Figure2.Thein-situSCXRDdeterminedlocationsofXeatomsinthecavit
30、iesofATC-Cu.FurtherstudiesoftheXeandKrloadedATC-Cucrystalsrevealedthemechanismoftheself-adjustingbehaviorinATC-Cu.AspresentedinFigure2,therearefourprimarylocationsofXeatomsinATC-Cu,whicharebasedonmultipleC-H-Xe2interactions.Remarkably,althoughthesitebetweentwooppositeCupeddle-wheelexhibitsexcellentC
31、H4andC2H2adsorptioncapability,1141fewXeorKratomscanbeobservedatthesitefromin-situSCXRD.TheaboveresultssuggesttheCuunsaturatedmetalsiteisnotthepreferredXeorKradsorptionsite.ToexplorethepreferentialXeadsorptionsite,weemployedperiodicdensityfunctionaltheory(DFT)methodstodeterminetheabsoluteenergiesford
32、ifferentXeadsorptionsitesinATC-CuasrevealedthroughSCXRD.Thecalculationresultsindicatedthatthecontractivecavities,CavityIAandIIA,aretheenergeticallyfavorablesitesinATC-Cu,withthecalculatedenergyof39.38and41.56kJmol-1forXe1andXe2,whiletheexpandedCavityIBandIIBexhibitsthelowerenergyof37.45and31.28kJmol
33、-1,whichadsorptionisothermsforXe,Kr,N2,andO2werecollectedat298K.AsillustratedinFigure3A,theuptakeamountsofN2andO2forATC-CuissignificantlylowerthanXeandKr.TheXeuptakecapacityofATC-Cureaches2.65mmolgat298Kand0.1bar,aremuchlowerthanthecontractivecavities.Thecalculationresultsfurtherconfirmedtheself-adj
34、ustingbehaviorofATC-CuiscausedbythesynergisticeffectbasedonmultipleweakinteractionsbetweenXeandtheframework.CalculationsoftheadsorptionenergiesforKradsorbedabouttheanalogoussitesinATC-CurevealednotablylowerbindingenergiescomparedtothoseforXe(TableS10).respectivelyattains2.7and0.52mmolg1at1and0.1bar,
35、whicharetherecordvaluesundersimilarconditions.I810-11)(Figure3D)Uponreaching1barat298,ATC-Cucanadsorb5.0mmolgor0.95gcm3Xe,whichisevenhigherthanxenonhydrate(0.85gcm3).Furthermore,ATC-Cuexhibitsexcellentcycleperformance;asshowninFigure3B,theuptakeamountofXeexhibitsnodecreaseaftertencycles.Theexcellent
36、XeandKrcapabilityatlowpressuresandroomtemperaturessuggeststhatATC-CuisapromisingmaterialforXeandKrcaptureevenintheambientatmosphere.InspiredbythesignificantdifferenceintheuptakeamountbetweenXe/KrandN2/O2inATC-Cu,theselectivityofXe/N?andXe/O2aswellastheuptakeamountofXeinthemixturegas(400ppmXe,balance
37、dbyN2orO2)wasdeterminedusingtheIdealAdsorbedSolutionTheory(IAST).Meanwhile,theselectivityofKr/N2andKr/O?aswellastheuptakeamountofKrinthemixturegas(1000ppmKr,balancedbyN2orO2)at298Kand1barwasalsodeterminedbyIAST.AsdisplayedinFigureS7andS8,thecalculatedXe/NzandXe/Ozselectivityforthecorrespondingmixtur
38、egas(400ppmXe,balancedbyN2orO2)inATC-Cuare66and109respectivelyat298Kand1bar.For400ppmXeinN2and1000ppmKrinN2,thecalculateduptakeamountattainsto22.2mmolkgand4.2mmolkg1,respectively.Furthermore,theselectivityofXe/KrwasalsodeterminedusingIAST.TheXe/KrselectivityfortheKr/Xemixture(Xe/Kr=20/80v/v)is13.9,w
39、hichislowerthanCo-squarate,SB-MOF-1,CROFOUR-1-Ni,andMOF-Cu-H,buthigherthanotherMOFs(TableS4).(8J0-111Figure3.(A)TheXe,Kr,O2.andN2isothermsforATC-Cu;(B)Xeadsorption/desorptioncyclingdataofATC-Cu;Surveyof(C)Xeand(D)Kruptakeamountat298Kand0.1barinATC-Cuandothertop-performancematenals.654321o.aGO.GO.BEE
40、-ssaoDToinvestigatetheimpactoftheself-adjustingbehavioronthegasadsorptioncapabilityofATC-Cu,thesingle-componentcomparedfavorablywiththereportedporousmaterials.1810-111(Figure3C)Similarly,KruptakeamountofATC-Cuat298KIlliFigure4.(A)Columnbreakthroughexperimentfor400ppmXe.40ppmKr,21%O2,balancedwithN:at
41、298Kand1barforATC-Cu;(B)Columnbreakthroughexperimentfor1000ppmKr,21%O2,balancedwithN2at298Kand1barforATC-Cu.(C)Xeuptakeamountsoftopperformancematenalsfromcolumnbreakthroughexperimentfor400ppmXe.40ppmKr,21%O2.balancedwithN:at298Kand1bar;(D)Kruptakeamountsoftopperformancematenalsfromcolumnbreakthrough
42、experimentfor1000ppmKr,21%O2,balancedwithNjat298Kand1bar.GiventhehighselectivityofXeandKroverN2and02calculatedbyIAST,thecolumnbreakthroughexperimentswereperformedwithagasmixtureconsistingof400ppmXe.40ppmKrbalancedwithN2andO2.Thisconditionispresentinthenuclearreprocessingindustryandanymaterialthatisc
43、apabletoselectivelyseparateXeandKrovertheothergases,nearroomQ一。snuroIAIpQ8O(12)1314temperature,wouldpotentiallyreplacecryogenictechnology.Therefore,columnbreakthroughexperimentsatroomtemperatureonCu-ATCwereperformed,byfeedingairwith400ppmXeand40ppmKrandmonitoredusingamassspectrometerasshowninFigure4
44、A.TheretentiontimeofXeislongerthanthatofKrandothermaingasesintheairwhichindicatesthatATC-CucaneffectivelycaptureandseparateXefromagasmixtureusefulfornucleargasreprocessing.TheXeandKrcapacityofATC-CufromthebreakthroughexperimentismuchhigherthananyMOFsandporousorganiccagematerialswetestedthusfar.Assho
45、wninFigure4C,theequilibriumXecapacityfrombreakthroughexperimentsinATC-Cu(32mmol/kg)surpassedanyMOFsandporousorganiccagematerialswetestedthusfar.FurtherbreakthroughexperimentswereperformedonATC-CutodemonstratetheremovalofKrfromthegascompositionwithoutXe(1000ppmKr,78%N21and21%O2)atroomtemperature(Figu
46、re4B).TheKrcapacityofCu-ATCwasfoundtobe8mmolkg1,higherthanthehigh-performancematerialsincludingNiMOF-74,CC3,andSBMOF-1(Figure4D).Inconclusion,wereportedaself-adjustingframeworkinMOFforcapturingtraceXeandKrfromthenuclearreprocessingoffgas.Theself-adjustingbehaviorofATC-Cuhasbeenillustratedviagases-lo
47、adedSCXRDstudiesalongwiththeoreticalcalculations.Theuniqueself-adjustingframeworkendowstheATC-CutherecordXeandKruptakecapacityat0.1barand298K,aswellasthebenchmarkXecapturecapabilityinthenuclearreprocessingoff-gas.Thisworkprovidesanewroutetodesignandimplementnovelporousmaterialswiththeself-adjustingf
48、rameworkfordevelopinghigh-performanceseparationmaterials.AcknowledgementsTheauthorsthankthesupportfromtheRobertA.WelchFoundation(B-0027)andtheUSNationalScienceFoundation(ECCS-2029800).Z.N.acknowledgestheNationalNaturalScienceFoundationofChina(Grant22001186)andtheNationalScienceFoundationofJiangsuPro
49、vince(GrantBK20200853).T.P.,K.A.F.,andB.S.acknowledgestheNationalScienceFoundation(AwardNo.DMR-1607989),includingsupportfromtheMajorResearchInstrumentationProgram(AwardNo.CHE1531590).ComputationalresourcesweremadeavailablebyaXSEDEGrant(No.TG-DMR090028).ResearchComputingattheUniversityofSouthFloridaa
50、ndHigh-PerformanceComputingatNorthCarolinaStateUniversity.B.S.alsoacknowledgessupportfromanACSPetroleumResearchFundgrant(ACSPRF56673ND6).PKTthankDOE-OfficeofNuclearEnergyforsupport.Particularly,wethankKenMarsden(INL),JohnVienna(PNNL),PatriciaPaviet(PNNL)andKimberlyGray(DOENE).PartialsupportfromtheRe
51、searchersSupportingProgram(RSP2022/55)atKingSaudUniversity,Riyadh,SaudiArabiaisalsoacknowledged(AMA).M.I.Hoffert,K.Caldeira,G.Benford,D.R.Criswell,C.Green,H.Herzog,A.K.Jain.H.S.Kheshgi,K.S.Lackner.J.S.Lewis.H.D.Lightfoot.W.Manheimer,J.C.Mankins.M.E.Mauel.L.J.Perkins,M.E.Schlesinger.T.Volk,T.M.L.Wigl
52、ey,Science.2002,298,981一987.1 P.A.Kharecha,J.E.Hansen,Environ.Set.Technol.2013,47,4889-4895.2 Chu,S.&Majumdar.Nature.2012,488,294-303.3 J.RFontaine,F.Pointurier,X.Blanchard,T.Taffary,J.Environ.Radioact.2004.72,129-135.4 a)B.Driehuys,J.Downward.Science.2006.314.432-433;b)N.RFranks,R.Dickinson,S.L.M.d
53、eSousa,A.C.Hall,W.R.Lieb,Nature.1998,396,324.5 S.-C.Hwang,W.R.Weltmer,HeliumGroupGases.Kirk-OthmerEncyclopediaofChemicalTechnology.2000F.G.Kerry,IndustrialGasHandbook:GasSeparationandPurification,CRCPress,BocaRaton,Florida,2007.|8a)J.Liu,RK.Thallapally,D.Strachan,Langmuir.2012,28,11584-11589;b)RRyan
54、,O.K.Farha,L.J.Broadbelt.R.Q.Snurr,AIChEJ.2011,57,1759-1766;c)A.S.Dorcheh,D.Denysenko,D.Volkmer.W.Donner,M.Hirscher,Micropor.Mesopor.Mat.2012,162,64-68;d)H.Wang,K.Yao,Z.Zhang,J.Jagiello,Q.Gong,Y.Han,J.Li,Chem.Sci.2014,5.620-624;e)M.H.Mohamed.S.K.Elsaidi.T.Pham.K.A.Forrest,H.T.Schaef,A.Hogan,L.Wojtas
55、,W.Xu,B.Space.M.J.Zaworotko,P.K.Thallapally,Angew.Chem.Int.Ed.2016,55,82858289;Angew.Chem.2016,128,8425-8429;f)T.Wang,Y.-L.Peng,E.Lin,乙Niu,RLi,S.Ma,RZhao,Y.Chen,P.Cheng,Z.Zhang.Inorg.Chem.2020,59.4868-4873;g)L.Li.L.Guo.乙Zhang.Q.Yang.Y.Yang.Z.Bao,Q.Ren.J.Li.J.Am.Chem.Soc.2019.141,9358-9364;h)S.Xiong,
56、Y.Gong,S.Hu,X.Wu,W.Li,Y.He,B.Chen,X.Wang,J.Mater.Chem.A2018.6.4752-4758;i)H.Wang,乙Shi,J.Yang.T.Sun.B.Rungtaweevoranit,H.Lyu,Y.B.Zhang.O.M.Yaghi.Angew.Chem.Int.Ed.2021.60.3417-342V.Angew.Chem.2021,133.3459-3463;j)K.B.Idrees.乙Chen,X.Zhang,M.R.Mian,R.J.Drout,T.Islamoglu,O.K.Fartia.Chem.Mater.2020.32.3776-3782;k)H.Zhang,Y.Fan,R.Krishna.X.Feng.L.Wang,F.Luo,Sci.Bull.2021.66,1073-1079;I)Z.Yan,Y.Gong.B.Chen.X.Wu.L.Cui.S.Xiong,S.Peng.Sep.Puri
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 软木制品生命周期评价与环境影响考核试卷
- 足浴店顾客投诉预防与应对考核试卷
- 纺纱生产过程中的节能减排考核试卷
- 烘炉热效率计算与优化考核试卷
- 纸质汽车内饰设计创新与市场分析考核试卷
- 羽绒制品消费者需求分析与产品设计考核试卷
- 葡萄酒酿造可持续发展战略考核试卷
- 定制型国际商务考察旅游合作协议
- 高端展览活动安保及安全检查服务协议
- 美团新员工培训
- 《陆上风电场工程概算定额》(NB-T 31010-2019)
- 小学科学冀人版六年级下册全册同步练习含答案
- 邮政储蓄银行-客户经理(个人消费贷款)-试题+答案
- 教学能力比赛-教学实施报告(汽车运用与维修)1
- 青年筑梦之旅创业计划书
- 髂动脉瘤破裂的护理课件
- 网络设备的认证与授权管理最佳实践手册
- 山东省枣庄市山亭区2022年部编版小升初语文试卷
- 自然辩证法概论试题及答案
- 设备安全操作培训
- 社会学知识竞赛(58道含答案)
评论
0/150
提交评论