Self-Adjusting Metal-Organic Framework for Efficient Capture of Trace Xenon and Krypton.docx_第1页
Self-Adjusting Metal-Organic Framework for Efficient Capture of Trace Xenon and Krypton.docx_第2页
Self-Adjusting Metal-Organic Framework for Efficient Capture of Trace Xenon and Krypton.docx_第3页
Self-Adjusting Metal-Organic Framework for Efficient Capture of Trace Xenon and Krypton.docx_第4页
Self-Adjusting Metal-Organic Framework for Efficient Capture of Trace Xenon and Krypton.docx_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Angewandte1GDChEineZeitschriftderGesellschaftDeutscherChemikerChemiewww.angewandte.deAkzeptierterArtikelTitel:Self-AdjustingMetal-OrganicFrameworkforEfficientCaptureofTraceXenonandKryptonAutoren:ZhengNiu,ZiwenFan,TonyPham,GauravVerma,KatherineA.Forrest,BrianSpace,PraveenK.Thallapally,AbdullahM.Al-En

2、izi,andShengqianMaDieserBeitragwurdenachBegutachtungundUberarbeitungsofortalsakzeptierterArtikel(AcceptedArticle;AA)publiziert.DiedeutscheUbersetzungwirdgemeinsammitderendgultigenenglischenFassungerscheinen.DieendgiiltigeenglischeFassung(VersionofRecord)wirdehestmoglichnachdemRedigierenundeinemKorre

3、kturgangalsEarly-View-BeitragerscheinenundkannsichnaturgemafivonderAAFassungunterscheiden.LesersolltendaherdieendgultigeFassung,sobaidsieveroffentlichtist,verwenden.FurdieAA-FassungtragtderAutordiealleinigeVerantwortung.Zitierweise:Angew.Chem.Int.Ed.2022,e202117807LinkzurVoR:https:/doi.Org/10.1002/a

4、nie.202117807WlLEY-VCHWlLEY-VCHCOMMUNICATIONSelf-AdjustingMetal-OrganicFrameworkforEfficientCaptureofTraceXenonandKryptonZhengNiu,*(aZiwenFan,同TonyPham,同GauravVerma,【加KatherineA.Forrest,对BrianSpace,回PraveenK.Thallapally,*IclAbdullahM.Al-Enizi,mShengqianMa*bla ZiwenFanandProf.Z.NiuCollegeofChemistry,

5、ChemicalEngineeringandMaterialsScience.SoochowUniversity,Suzhou215123,PeoplesRepublicofChinaE-mail:zhenaniuOb Dr.G.VermaandProf.S.MaDepartmentofChemistry,UniversityofNorthTexas.Denton,Texas76201.UnitedStatesE-mail:Shenaaian.MaunLeduc PraveenK.ThallapallyPhysicalandComputationalScienceDirectorate.Pac

6、ificNorthwestNationalLaboratory.Richland,Washington99354,UnitedStatesE-mail:praveen,thallaDallyDnnl.aovd Dr.T.PhamandDr.K.A.ForrestDepartmentofChemistry.UniversityofSouthFlorida,4202E.FowlerAvenue.Tampa.Florida33620,UnitedStatese Prof.B.SpaceDepartmentofChemistry,NorthCarolinaStateUniversity,2700Sti

7、nsonDr.,Raleigh,NC27607,UnitedStatestProf.A.M.Al-EniziDepartmentofChemistry,CollegeofScience,KingSaudUniversity,Riyadh11451,SaudiArabiaSupportinginformationforthisarticleisgivenviaalinkattheendofthedocument.usedtoseparateXeandKrfromnuclearreprocessingoff-gas,171whichisenergy-intensiveanduneconomic.A

8、lternatively,porousmaterialscancaptureXeandKrfromnuclearreprocessingoff-gaswithgreaterenergyefficiency.Amongvarioustypesofporousmaterials,metal-organicframeworks(MOFs)exhibitsuperiorXeandKrcaptureperformance(81comparedtoporousorganiccagecompoundsandtraditionalporousmaterialsincludingsilver-loadedzeo

9、litesandactivatedcarbons.冏ReportedMOFsforcapturingXeandKrcanbegroupedasa)rigidframework,whichexhibitsnosignificantstructuralchangeaftergasfilling(Scheme1A);andb)flexibleframework,whichexhibitsprofoundstructuralchangeaftergasfilling(Scheme1B).Therigidframeworkwithappropriatelysizedporecanaccommodatet

10、heXe/Kratomsbutthefine-tuningofporesizeisnotaneasytask.SomeflexibleMOFsshowthebreathingeffectsafterfillingwithXeorKrmoleculesandthusrealizetheseparationofXeandKr.”However,sincethebreathingeffecthasthethresholdconcentrationtothetargetgas,itisdifficulttobeappliedtothecaptureoftraceamountsofXeandKr.Abs

11、tract:Thecaptureofthexenonandkryptonfromnuclearreprocessingoff-gasisessentialtothetreatmentofradioactivewaste.AlthoughvariousporousmaterialshavebeenemployedtocaptureXeandKr,thedevelopmentofhigh-performanceadsorbentscapableoftrappingXe/Kratverylowpartialpressureasintheinthenuclearreprocessingoff-gasc

12、onditionsremainschallenging.Herein,wereportaself-adjustingmetal-organicframeworkbasedonmultipleweakbindinginteractionstocapturetraceXeandKrfromthenuclearreprocessingoff-gas.Theself-adjustingbehaviorofATC-Cuanditsmechanismhavebeenvisualizedbythein-situsingle-crystalX-raydiffractionstudiesandtheoretic

13、alcalculations.Theself-adjustingbehaviorendowsATC-Cuunprecedenteduptakecapacitiesof2.65and0.52cm3g1forXeandKrrespectivelyat0.1barand298K,aswellastherecordXecapturecapabilityfromthenuclearreprocessingoff-gas.OurworknotonlyprovidesabenchmarkXeadsorbentbutproposesanewroutetoconstructsmartmaterialsforef

14、ficientseparations.inrr解盗FlexibleframeworkSelf-adjustingframeworkiau”3vvv/ivvvxyjjculauaiivvv/iivv/traceXeandKrfromthenuclearreprocessingoff-gas.AsillustratedinScheme1C,differentfromtherigidframeworkandflexibleframework,theporesoftheself-adjustingframeworkcanPursuingthebalancebetweenenergydemandandt

15、heenvironmentisanemergingissueinourgeneration.111Albeitconfrontedwithsomenegativecriticisms,nuclearpowergenerationhaspreventedabout1.84millionairpollution-relateddeathsandreducedCO?emissionsby64billiontonsfromsupplementingfossilfuels.Therapidgrowthofnuclearindustrieshasgeneratedtonsofassociatedhigh-

16、levelradioactivewastewhichmustbesafelysequestered;otherwiseitwouldcauseseriousenvironmentalissues.131Inthetreatmentofnuclearfuelwastes,gaseousradioactivekryptonandxenonaredifficulttocapturecomparedwithotherspecies.141Forgaseousradioactivekryptonandxenon,thelonghalf-lifeof85Kr(t”2*10.8years)urgesitss

17、eparationandcapturefromtheoff-gastoavoidradioactivecontamination,whiletheradioactive135Xecancaptureaneutrontotransmutetostable136Xe,whichcanbeusedinthefieldfromlighting,laser,medicalimagingtoanaesthesia.151Furthermore,thecaptureofXeinthetreatmentofnuclearfuelwastecansignificantlylowerthepriceoftheXe

18、sincetheconcentrationofXeinthenuclearfissiongasis4500timeshigherthanintheatmosphere.161Currently,cryogenicdistillationtechnologyismostly1smartlyadjusttheirporesizeforthetargetgases,andremainunchangedforothergases.Inthisregard,wechooseanalkylporousMOF,anhydrousCu2(ATC)(denotedbyATC-Cu),(121whichhasas

19、emi-rigidframeworkandincludestwotypesofhydrogenrichcavities.TheframeworkofATC-Cucanadjustitsporestoaccommodatethetargetgases(Xe/Kr)yetremainunresponsivetothemaingasesofnuclearreprocessingoff-gas(N2andO2)atnormalpressureandtemperature.Takingadvantageoftheself-adjustingbehavior,ATC-Cudemonstratesthere

20、cordXeandKruptakecapacityat0.1barand298K,aswellasthebenchmarkXecapturecapabilityinthenuclearreprocessingoff-gas.ATC-Cuwassynthesizedaccordingtotheliteraturewithminormodifications(SeeSI).AsshowninFigure1A,fourCupaddlewheelsecondarybuildingunits(SBUs)wereconnectedbytheATCligandtoconstructa4,4-coordina

21、tednet.TheframeworkofATC-CuincludesCu-openmetalsitesandtwotypesofhydrogenrichpolyhedroncavities,CavityI(green)andCavityII(purple).ThesymmetrycenterofCavityIandthemidpointofC4axisofCavityIIaredefinedasthecentersofCavityIandII,respectively.Theaveragedistancebetweenthecenterandtheatomonthevertexofthepo

22、lyhedroncavity(denotedas(C-V)avhereafter)is3.90Aand3.85AforCavityIandII,respectively.CavityIhastwelveHatoms,whileCavityIIhaseightHatomsandeightoxygenatoms.(Figure1B)ThePXRDpatternoftheassynthesizedATC-Cusampleagreeswellwiththecalculatedpatternfromthesinglecrystaldata.Furthermore,theTAGdatarevealedth

23、atATC-Cuisstabletill270C.TheBrunauer-Emmett-Teller(BET)surfaceareaofATC-Cuisabout600m2g_1(Langmuirsurfacearea:667m2/g),whichwascalculatedfromtheN2sorptionisothermsat77K.Thegas-loadedsingle-crystalX-raydiffraction(SCXRD)experimentswereperformedtodetecttheimpactofN2,O2,Xe,andKrontheATC-Cuframework.113

24、1AfterexposingintoN2orO2atmosphereat298Kand1barfor12h,thecavitiesinATC-Curemainunchanged,indicatingthattheframeworkofATC-CushowsrigiditytowardN2andO2presumablyduetotheveryweakinteractions.However,afterloadingXetoATC-Cuunderthesamecondition,significantchangesoftheATC-Cuframeworkwereobserved.Different

25、fromtheO2andN2molecules,therelativelystrongerinteractionbetweenXeandH/OatomsonthecavitiesofATC-CumakethepartsofthecavitiesintheATC-CuframeworkcanshrinkandsmartlyfitXeatoms,andtherestcavitiesintheframeworkareenlargedtobalancetheinnerstressofthecrystal.AsshowninFigure1CandD,Xeatomsarelocatedatthecente

26、rofthecavitiesornearby.Comparedwith(C-V)avofCavityI,theaveragedistancebetweenXeandtheatoms(denotedas(Xe-V)avhereafter)onCavityIAandIIAdecreasesfrom3.90Ato3.67Aand3.75Arespectively.Meanwhile,theshapeoftheCavityIAandIBexhibitsthesignificantchanges:thelengthofCavityIchangesfrom6.24Ato5.53Aand6.77AforCa

27、vityIAandIBrespectively.(Figure1C)ThesimilarselfadjustingbehaviorcanalsobeobservedatCavityIBandIIB,yetthe(Xe-V)avofCavityIIBincreasesfrom3.85A(C-V)”ofCavityII)to3.94A.(Figure1D)AlthoughtheuptakeamountofKrinATC-CuislessthanthatofXe,wealsocanobservetheKratomsleadthechangeoflengthofcavities,whichindica

28、testhatthesimilarinteractionsasXe.(SchemeS1)Consequently,ATC-Cuexhibitstheself-adjustingbehaviorforXeandKr,whileexhibitingunresponsivetoN2andO2.Theaboveself-adjustingbehaviormaybeattributedtotheinteractionsbetweenXe/Kratomsandframeworkcausedlocaldynamics.Figure1.(A)ThecavitiesintheframeworkofATC-Cu;

29、(B)TheenlargedviewofCavityIandII;Thechangeofthe(C)CavityIand(D)cavityIIafteradsorbingN2,O2,andXe.(TheblueballinCavityIandIIstandforthecenterofthecavities,andthegoldballinCavityIA,IB,IIAandIIBstandfortheSCXRDdeterminedlocationofXeinATC-Cu).Figure2.Thein-situSCXRDdeterminedlocationsofXeatomsinthecavit

30、iesofATC-Cu.FurtherstudiesoftheXeandKrloadedATC-Cucrystalsrevealedthemechanismoftheself-adjustingbehaviorinATC-Cu.AspresentedinFigure2,therearefourprimarylocationsofXeatomsinATC-Cu,whicharebasedonmultipleC-H-Xe2interactions.Remarkably,althoughthesitebetweentwooppositeCupeddle-wheelexhibitsexcellentC

31、H4andC2H2adsorptioncapability,1141fewXeorKratomscanbeobservedatthesitefromin-situSCXRD.TheaboveresultssuggesttheCuunsaturatedmetalsiteisnotthepreferredXeorKradsorptionsite.ToexplorethepreferentialXeadsorptionsite,weemployedperiodicdensityfunctionaltheory(DFT)methodstodeterminetheabsoluteenergiesford

32、ifferentXeadsorptionsitesinATC-CuasrevealedthroughSCXRD.Thecalculationresultsindicatedthatthecontractivecavities,CavityIAandIIA,aretheenergeticallyfavorablesitesinATC-Cu,withthecalculatedenergyof39.38and41.56kJmol-1forXe1andXe2,whiletheexpandedCavityIBandIIBexhibitsthelowerenergyof37.45and31.28kJmol

33、-1,whichadsorptionisothermsforXe,Kr,N2,andO2werecollectedat298K.AsillustratedinFigure3A,theuptakeamountsofN2andO2forATC-CuissignificantlylowerthanXeandKr.TheXeuptakecapacityofATC-Cureaches2.65mmolgat298Kand0.1bar,aremuchlowerthanthecontractivecavities.Thecalculationresultsfurtherconfirmedtheself-adj

34、ustingbehaviorofATC-CuiscausedbythesynergisticeffectbasedonmultipleweakinteractionsbetweenXeandtheframework.CalculationsoftheadsorptionenergiesforKradsorbedabouttheanalogoussitesinATC-CurevealednotablylowerbindingenergiescomparedtothoseforXe(TableS10).respectivelyattains2.7and0.52mmolg1at1and0.1bar,

35、whicharetherecordvaluesundersimilarconditions.I810-11)(Figure3D)Uponreaching1barat298,ATC-Cucanadsorb5.0mmolgor0.95gcm3Xe,whichisevenhigherthanxenonhydrate(0.85gcm3).Furthermore,ATC-Cuexhibitsexcellentcycleperformance;asshowninFigure3B,theuptakeamountofXeexhibitsnodecreaseaftertencycles.Theexcellent

36、XeandKrcapabilityatlowpressuresandroomtemperaturessuggeststhatATC-CuisapromisingmaterialforXeandKrcaptureevenintheambientatmosphere.InspiredbythesignificantdifferenceintheuptakeamountbetweenXe/KrandN2/O2inATC-Cu,theselectivityofXe/N?andXe/O2aswellastheuptakeamountofXeinthemixturegas(400ppmXe,balance

37、dbyN2orO2)wasdeterminedusingtheIdealAdsorbedSolutionTheory(IAST).Meanwhile,theselectivityofKr/N2andKr/O?aswellastheuptakeamountofKrinthemixturegas(1000ppmKr,balancedbyN2orO2)at298Kand1barwasalsodeterminedbyIAST.AsdisplayedinFigureS7andS8,thecalculatedXe/NzandXe/Ozselectivityforthecorrespondingmixtur

38、egas(400ppmXe,balancedbyN2orO2)inATC-Cuare66and109respectivelyat298Kand1bar.For400ppmXeinN2and1000ppmKrinN2,thecalculateduptakeamountattainsto22.2mmolkgand4.2mmolkg1,respectively.Furthermore,theselectivityofXe/KrwasalsodeterminedusingIAST.TheXe/KrselectivityfortheKr/Xemixture(Xe/Kr=20/80v/v)is13.9,w

39、hichislowerthanCo-squarate,SB-MOF-1,CROFOUR-1-Ni,andMOF-Cu-H,buthigherthanotherMOFs(TableS4).(8J0-111Figure3.(A)TheXe,Kr,O2.andN2isothermsforATC-Cu;(B)Xeadsorption/desorptioncyclingdataofATC-Cu;Surveyof(C)Xeand(D)Kruptakeamountat298Kand0.1barinATC-Cuandothertop-performancematenals.654321o.aGO.GO.BEE

40、-ssaoDToinvestigatetheimpactoftheself-adjustingbehavioronthegasadsorptioncapabilityofATC-Cu,thesingle-componentcomparedfavorablywiththereportedporousmaterials.1810-111(Figure3C)Similarly,KruptakeamountofATC-Cuat298KIlliFigure4.(A)Columnbreakthroughexperimentfor400ppmXe.40ppmKr,21%O2,balancedwithN:at

41、298Kand1barforATC-Cu;(B)Columnbreakthroughexperimentfor1000ppmKr,21%O2,balancedwithN2at298Kand1barforATC-Cu.(C)Xeuptakeamountsoftopperformancematenalsfromcolumnbreakthroughexperimentfor400ppmXe.40ppmKr,21%O2.balancedwithN:at298Kand1bar;(D)Kruptakeamountsoftopperformancematenalsfromcolumnbreakthrough

42、experimentfor1000ppmKr,21%O2,balancedwithNjat298Kand1bar.GiventhehighselectivityofXeandKroverN2and02calculatedbyIAST,thecolumnbreakthroughexperimentswereperformedwithagasmixtureconsistingof400ppmXe.40ppmKrbalancedwithN2andO2.Thisconditionispresentinthenuclearreprocessingindustryandanymaterialthatisc

43、apabletoselectivelyseparateXeandKrovertheothergases,nearroomQ一。snuroIAIpQ8O(12)1314temperature,wouldpotentiallyreplacecryogenictechnology.Therefore,columnbreakthroughexperimentsatroomtemperatureonCu-ATCwereperformed,byfeedingairwith400ppmXeand40ppmKrandmonitoredusingamassspectrometerasshowninFigure4

44、A.TheretentiontimeofXeislongerthanthatofKrandothermaingasesintheairwhichindicatesthatATC-CucaneffectivelycaptureandseparateXefromagasmixtureusefulfornucleargasreprocessing.TheXeandKrcapacityofATC-CufromthebreakthroughexperimentismuchhigherthananyMOFsandporousorganiccagematerialswetestedthusfar.Assho

45、wninFigure4C,theequilibriumXecapacityfrombreakthroughexperimentsinATC-Cu(32mmol/kg)surpassedanyMOFsandporousorganiccagematerialswetestedthusfar.FurtherbreakthroughexperimentswereperformedonATC-CutodemonstratetheremovalofKrfromthegascompositionwithoutXe(1000ppmKr,78%N21and21%O2)atroomtemperature(Figu

46、re4B).TheKrcapacityofCu-ATCwasfoundtobe8mmolkg1,higherthanthehigh-performancematerialsincludingNiMOF-74,CC3,andSBMOF-1(Figure4D).Inconclusion,wereportedaself-adjustingframeworkinMOFforcapturingtraceXeandKrfromthenuclearreprocessingoffgas.Theself-adjustingbehaviorofATC-Cuhasbeenillustratedviagases-lo

47、adedSCXRDstudiesalongwiththeoreticalcalculations.Theuniqueself-adjustingframeworkendowstheATC-CutherecordXeandKruptakecapacityat0.1barand298K,aswellasthebenchmarkXecapturecapabilityinthenuclearreprocessingoff-gas.Thisworkprovidesanewroutetodesignandimplementnovelporousmaterialswiththeself-adjustingf

48、rameworkfordevelopinghigh-performanceseparationmaterials.AcknowledgementsTheauthorsthankthesupportfromtheRobertA.WelchFoundation(B-0027)andtheUSNationalScienceFoundation(ECCS-2029800).Z.N.acknowledgestheNationalNaturalScienceFoundationofChina(Grant22001186)andtheNationalScienceFoundationofJiangsuPro

49、vince(GrantBK20200853).T.P.,K.A.F.,andB.S.acknowledgestheNationalScienceFoundation(AwardNo.DMR-1607989),includingsupportfromtheMajorResearchInstrumentationProgram(AwardNo.CHE1531590).ComputationalresourcesweremadeavailablebyaXSEDEGrant(No.TG-DMR090028).ResearchComputingattheUniversityofSouthFloridaa

50、ndHigh-PerformanceComputingatNorthCarolinaStateUniversity.B.S.alsoacknowledgessupportfromanACSPetroleumResearchFundgrant(ACSPRF56673ND6).PKTthankDOE-OfficeofNuclearEnergyforsupport.Particularly,wethankKenMarsden(INL),JohnVienna(PNNL),PatriciaPaviet(PNNL)andKimberlyGray(DOENE).PartialsupportfromtheRe

51、searchersSupportingProgram(RSP2022/55)atKingSaudUniversity,Riyadh,SaudiArabiaisalsoacknowledged(AMA).M.I.Hoffert,K.Caldeira,G.Benford,D.R.Criswell,C.Green,H.Herzog,A.K.Jain.H.S.Kheshgi,K.S.Lackner.J.S.Lewis.H.D.Lightfoot.W.Manheimer,J.C.Mankins.M.E.Mauel.L.J.Perkins,M.E.Schlesinger.T.Volk,T.M.L.Wigl

52、ey,Science.2002,298,981一987.1 P.A.Kharecha,J.E.Hansen,Environ.Set.Technol.2013,47,4889-4895.2 Chu,S.&Majumdar.Nature.2012,488,294-303.3 J.RFontaine,F.Pointurier,X.Blanchard,T.Taffary,J.Environ.Radioact.2004.72,129-135.4 a)B.Driehuys,J.Downward.Science.2006.314.432-433;b)N.RFranks,R.Dickinson,S.L.M.d

53、eSousa,A.C.Hall,W.R.Lieb,Nature.1998,396,324.5 S.-C.Hwang,W.R.Weltmer,HeliumGroupGases.Kirk-OthmerEncyclopediaofChemicalTechnology.2000F.G.Kerry,IndustrialGasHandbook:GasSeparationandPurification,CRCPress,BocaRaton,Florida,2007.|8a)J.Liu,RK.Thallapally,D.Strachan,Langmuir.2012,28,11584-11589;b)RRyan

54、,O.K.Farha,L.J.Broadbelt.R.Q.Snurr,AIChEJ.2011,57,1759-1766;c)A.S.Dorcheh,D.Denysenko,D.Volkmer.W.Donner,M.Hirscher,Micropor.Mesopor.Mat.2012,162,64-68;d)H.Wang,K.Yao,Z.Zhang,J.Jagiello,Q.Gong,Y.Han,J.Li,Chem.Sci.2014,5.620-624;e)M.H.Mohamed.S.K.Elsaidi.T.Pham.K.A.Forrest,H.T.Schaef,A.Hogan,L.Wojtas

55、,W.Xu,B.Space.M.J.Zaworotko,P.K.Thallapally,Angew.Chem.Int.Ed.2016,55,82858289;Angew.Chem.2016,128,8425-8429;f)T.Wang,Y.-L.Peng,E.Lin,乙Niu,RLi,S.Ma,RZhao,Y.Chen,P.Cheng,Z.Zhang.Inorg.Chem.2020,59.4868-4873;g)L.Li.L.Guo.乙Zhang.Q.Yang.Y.Yang.Z.Bao,Q.Ren.J.Li.J.Am.Chem.Soc.2019.141,9358-9364;h)S.Xiong,

56、Y.Gong,S.Hu,X.Wu,W.Li,Y.He,B.Chen,X.Wang,J.Mater.Chem.A2018.6.4752-4758;i)H.Wang,乙Shi,J.Yang.T.Sun.B.Rungtaweevoranit,H.Lyu,Y.B.Zhang.O.M.Yaghi.Angew.Chem.Int.Ed.2021.60.3417-342V.Angew.Chem.2021,133.3459-3463;j)K.B.Idrees.乙Chen,X.Zhang,M.R.Mian,R.J.Drout,T.Islamoglu,O.K.Fartia.Chem.Mater.2020.32.3776-3782;k)H.Zhang,Y.Fan,R.Krishna.X.Feng.L.Wang,F.Luo,Sci.Bull.2021.66,1073-1079;I)Z.Yan,Y.Gong.B.Chen.X.Wu.L.Cui.S.Xiong,S.Peng.Sep.Puri

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论