




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、必修3综合学业质量标准检测高二数学组一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1我校在检查学生作业时,抽出每班学号尾数为5的学生作业进行检查,这里运用的是( )A分层抽样B抽签抽样 C随机抽样 D系统抽样2下列程序的含义是( )A求方程x33x224x300的根 B求输入x后,输出yx33x224x30的值C求一般三次多项式函数的程序 D作yx33x224x30的作图程序3奥林匹克会旗中央有5个互相套连的圆环,颜色自左至右,上方依次为蓝、黑、红,下方依次为黄、绿,象征着五大洲在手工课上,老师将这5个环分发给甲、乙、丙、丁、戊五位同
2、学制作,每人分得1个,则事件“甲分得红色”与“乙分得红色”是( )A对立事件 B不可能事件C互斥但不对立事件 D不是互斥事件4将51转化为二进制数为( )A100 111(2) B110 110(2) C110 011(2) D110 101(2)5下列说法中,正确的是( )A数据5,4,4,3,5,2的众数是4B一组数据的标准差的平方是这组数据的方差C数据2,3,4,5的方差是数据4,6,8,10的方差的一半D频率分布直方图中各小矩形的面积等于相应各组的频数6168,54,264的最大公约数是( )A4 B6 C8 D97(2017·山东理,6)执行两次如图所示的程序框图,若第一次
3、输入x的值为7,第二次输入x的值为9,则第一次、第二次输出的a的值分别为( )A0,0 B1,1C0,1 D1,08已知回归直线x斜率的估计值为1. 23,样本点的中心为点(4,5),当x2时,估计y的值为( )A6. 46 B7. 46C2. 54 D1. 399某班50名学生在一次百米测试中,成绩全部介于13 s与19 s之间,将测试结果分成如下六组:13,14),14,15),15,16),16,17),17,18),18,19如图是按上述分组方法得到的频率分布直方图,设成绩小于17 s的学生人数占全班人数的百分比为x,成绩在15,17)中的学生人数为y,则从频率分布直方图中可以分析出x
4、和y分别为( )A90%,35 B90%,45 C10%,35 D10%,4510已知平面上画了一些彼此相距8 cm的平行线,把一枚半径为1 cm的硬币任意掷在平面上,则硬币不与任何一条平行线相碰的概率为( )A B C D11根据下面给出的2004年至2003年我国二氧化硫排放量(单位:万吨)柱形图以下结论不正确的是( )A逐年比较,2008年减少二氧化硫排放量的效果最显著 B2007年我国治理二氧化硫排放显现C2006年以来我国二氧化硫年排放量呈减少趋势 D2006年以来我国二氧化硫年排放量与年份正相关12将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a,第二次朝上一面的点数为
5、b,则函数yax22bx1在(,上为减函数的概率是( )A B C D二、填空题(本大题共4个小题,每小题5分,共20分,将正确答案填在题中横线上)13某学校高一、高二、高三年级的学生人数之比为334,现用分层抽样的方法从该校高中三个年极的学生中抽取容量为50的样本,则应从高二年级抽取_名学生. 14如图,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为_ _. 15已知一个5次多项式为f(x)4x53x32x25x1,用秦九韶算法求这个多项式当x3时的值为_ _. 16甲、乙两个人玩一转盘游戏(转盘如图,“C为弧AB的中点”),任意转动转盘一次,指
6、针指向圆弧AC时甲胜,指向圆弧BC时乙胜后来转盘损坏如图,甲提议连接AD,取AD中点E,若任意转动转盘一次,指针指向线段AE时甲胜,指向线段ED时乙胜然后继续游戏,你觉得此时游戏还公平吗?答案:_,因为P甲_P乙(填“<”,“>”或“”)三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17(本小题满分10分)甲、乙两人数学成绩的茎叶图如图所示:(1)求出这两名同学的数学成绩的平均数、标准差(2)比较两名同学的成绩,谈谈你的看法18(本小题满分12分)海关对同时从A、B、C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如
7、下表所示,工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测. 地区ABC数量50150100(1)求这6件样品中来自A、B、C各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进一步检测,求这2件商品来自相同地区的概率19(本小题满分12分)某出租车公司为了解本公司出租车司机对新法规的知晓情况,随机对100名出租车司机进行调查,调查问卷共10道题,答题情况如下表所示(1)如果出租车司机答对题目数大于等于9,就认为该司机对新法规的知晓情况比较好,试估计该公司的出租车司机对新法规知晓情况比较好的概率;(2)从答对题目数小于8的出租车司机中任选出2人做进一步的调查,求选出的2人
8、中至少有一名女出租车司机的概率答对题目数0,8)8910女213128男33716920(本小题满分12分)某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料:日期3月1日3月2日3月3日3月4日3月5日温差x()101113128发芽数y(颗)2325302616(1)请根据3月2日至3月4日的数据,求出y关于x的线性回归方程x;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否
9、可靠?21(本小题满分12分)(2017·山东文,16)某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游. (1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(2)若从亚洲国家和欧洲国家中各选1个,求这两个国家包括A1,但不包括B1的概率22(本小题满分12分)近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的分类垃圾箱为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1 000吨生活垃圾,数据统计如下(单位:吨):“厨余垃圾”箱“可回收物”箱“其他垃圾
10、”箱厨余垃圾400100100可回收物3024030其他垃圾202060(1)试估计厨余垃圾投放正确的概率P;(2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱,“可回收物”箱,“其他垃圾”箱的投放量分别为a、b、c,其中a0,abc600. 当数据a、b、c的方差s2最大时,写出a、b、c的值(结论不要求证明),并求出此时s2的值必修3综合学业质量标准检测答案(时间:120分钟满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1我校在检查学生作业时,抽出每班学号尾数为5的学生作业进行检查,这里运用的是
11、(D)A分层抽样B抽签抽样C随机抽样 D系统抽样解析号码顺序以一定的间隔抽取,这样的抽样是系统抽样2下列程序的含义是(B)A求方程x33x224x300的根B求输入x后,输出yx33x224x30的值C求一般三次多项式函数的程序D作yx33x224x30的作图程序解析由程序知,输入x后,输出yx33x224x30的值,应选B3奥林匹克会旗中央有5个互相套连的圆环,颜色自左至右,上方依次为蓝、黑、红,下方依次为黄、绿,象征着五大洲在手工课上,老师将这5个环分发给甲、乙、丙、丁、戊五位同学制作,每人分得1个,则事件“甲分得红色”与“乙分得红色”是(C)A对立事件 B不可能事件C互斥但不对立事件 D
12、不是互斥事件解析甲、乙不能同时得到红色,因而这两个事件是互斥事件;又甲、乙可能都得不到红色,即“甲或乙分得红色”的事件不是必然事件,故这两个事件不是对立事件4将51转化为二进制数为(C)A100 111(2) B110 110(2)C110 011(2) D110 101(2)解析如图所示,将51转化为二进制故51110 011(2)5下列说法中,正确的是(B)A数据5,4,4,3,5,2的众数是4B一组数据的标准差的平方是这组数据的方差C数据2,3,4,5的方差是数据4,6,8,10的方差的一半D频率分布直方图中各小矩形的面积等于相应各组的频数解析A中的众数是4和5;C中,2,3,4,5的方
13、差为1. 25,而数据4,6,8,10的方差为5;D中,频率分布直方图中各小矩形的面积等于相应各组的频率6168,54,264的最大公约数是(B)A4 B6C8 D9解析(168,54)(114,54)(60,54)(6,54)(6,48)(6,42)(6,36)(6,30)(6,24) (6,18)(6,12)(6,6)故168和54的最大公约数为6,又26444×6,6为264与6的最大公约数,也是这三个数的最大公约数7(2017·山东理,6)执行两次如图所示的程序框图,若第一次输入x的值为7,第二次输入x的值为9,则第一次、第二次输出的a的值分别为(D)A0,0 B1
14、,1C0,1 D1,0解析当x7时,b2,b24<7x又7不能被2整除,b213此时b29>7x,退出循环,a1,输出a1当x9时,b2,b24<9x又9不能被2整除,b213此时b29x,又9能被3整除,退出循环,a0输出a08已知回归直线x斜率的估计值为1. 23,样本点的中心为点(4,5),当x2时,估计y的值为(C)A6. 46 B7. 46C2. 54 D1. 39解析由题意知1. 23,4,5,则54×1. 23,即0. 08. 于是回归直线方程为1. 23x0. 08,当x2时,2. 549某班50名学生在一次百米测试中,成绩全部介于13 s与19 s
15、之间,将测试结果分成如下六组:13,14),14,15),15,16),16,17),17,18),18,19如图是按上述分组方法得到的频率分布直方图,设成绩小于17 s的学生人数占全班人数的百分比为x,成绩在15,17)中的学生人数为y,则从频率分布直方图中可以分析出x和y分别为(A)A90%,35 B90%,45C10%,35 D10%,45解析易知成绩小于17 s的学生人数占全班人数的百分比为1(0. 040. 06)×1×100%90%,成绩在15,17)中的学生的频率为(0. 360. 34)×10. 7,人数为50×0. 735人10已知平面
16、上画了一些彼此相距8 cm的平行线,把一枚半径为1 cm的硬币任意掷在平面上,则硬币不与任何一条平行线相碰的概率为(A)A BC D解析如图所示,设硬币的中心到其中一条平行线的距离为OA,若要硬币与之不相交,则1<|OA|<7. 记“硬币不与任何一条平行线相碰”为事件A,则事件A所占区间的长度为716(cm)由于两线间的距离为8 cm,则P(A),故硬币不与任何一条平行线相碰的概率为11根据下面给出的2004年至2003年我国二氧化硫排放量(单位:万吨)柱形图以下结论不正确的是(D)A逐年比较,2008年减少二氧化硫排放量的效果最显著B2007年我国治理二氧化硫排放显现C2006年
17、以来我国二氧化硫年排放量呈减少趋势D2006年以来我国二氧化硫年排放量与年份正相关解析由柱形图得,从2006年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关12将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a,第二次朝上一面的点数为b,则函数yax22bx1在(,上为减函数的概率是(D)A BC D解析由题意,函数yax22bx1在(,上为减函数满足条件第一次朝上一面的点数为a,第二次朝上一面的点数为b,a取1,2时,b可取1,2,3,4,5,6;a取3,4时,b可取2,3,4,5,6;a取5,6时,b可取3,4,5,6,共30种将一枚质地均匀的骰子先后抛掷两次,共有6
18、×636种等可能发生的结果,所求概率为. 故选D二、填空题(本大题共4个小题,每小题5分,共20分,将正确答案填在题中横线上)13某学校高一、高二、高三年级的学生人数之比为334,现用分层抽样的方法从该校高中三个年极的学生中抽取容量为50的样本,则应从高二年级抽取_15_名学生. 解析由已知,高二人数占总人数的,所以抽取人数为×501514如图,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为_0. 18_. 解析由题意知,这是个几何概型问题,0. 18S正方形1,S阴影0. 1815已知一个5次多项式为f(x)4x53x32x2
19、5x1,用秦九韶算法求这个多项式当x3时的值为_925_. 解析由f(x)(4x0)x3)x2)x5)x1,v04,v14×3012,v212×3333,v333×32101,v4101×35308,v5308×31925,故这个多项式当x3时的值为92516某篮球队6名主力队员在最近三场比赛中投进的三分球个数如下表所示:队员123456三分球个数a1a2a3a4a5a6下图是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框应填_i6?(i<7?)_,输出的s_a1a2a3a4a5a6_解析由题意可知,程序框图是要统
20、计6名队员投进的三分球的总数,由程序框图的循环逻辑知识可知,判断框应填i6?,输出的结果就是6名队员投进的三分球的总数,而6名队员投进的三分球数分别为a1,a2,a3,a4,a5,a6,故输出的sa1a2a6三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17(本小题满分10分)甲、乙两人数学成绩的茎叶图如图所示:(1)求出这两名同学的数学成绩的平均数、标准差(2)比较两名同学的成绩,谈谈你的看法解析(1)甲(6570808689959194107113)89s(6589)2(7089)2(8089)2(8689)2(8989)2(9589)2(9189)2(9
21、489)2(10789)2(11389)2199. 2,所以s甲14. 1乙(7986838893999898102114)94s(7994)2(8694)2(8394)2(8894)2(9394)2(9994)2(9894)2(9894)2(10294)2(11494)296. 8s乙9. 8(2)由(1)知,甲<乙且s甲>s乙所以乙同学的平均成绩较高且标准差较小说明乙同学比甲同学的成绩扎实、稳定18(本小题满分12分)海关对同时从A、B、C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示,工作人员用分层抽样的方法从这些商品中共抽取6件样品
22、进行检测. 地区ABC数量50150100(1)求这6件样品中来自A、B、C各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进一步检测,求这2件商品来自相同地区的概率解析(1)因为工作人员是按分层抽样抽取样品,所以各地区抽取样品的比例为:ABC50150100132各地区抽取的商品数分别别为A:6×1;B:6×3;C:6×2(2)设各地商品分别为A、B1、B2、B3、C1、C2所以所含基本事件共有(A,B1),(A,B2),(A,B3),(A,C1),(A,C2),(B1,B2),(B1,B3),(B1,C1),(B1,C2),(B2,B3),(B2
23、,C1),(B2,C2),(B3,C1),(B3,C2),(C1,C2)15种不同情况,样本事件包括(B1,B2),(B1,B3),(B2,B3),(C1,C2)4种情况所以,这两件商品来自同一地区的概率为P19(本小题满分12分)某出租车公司为了解本公司出租车司机对新法规的知晓情况,随机对100名出租车司机进行调查,调查问卷共10道题,答题情况如下表所示(1)如果出租车司机答对题目数大于等于9,就认为该司机对新法规的知晓情况比较好,试估计该公司的出租车司机对新法规知晓情况比较好的概率;(2)从答对题目数小于8的出租车司机中任选出2人做进一步的调查,求选出的2人中至少有一名女出租车司机的概率答
24、对题目数0,8)8910女213128男337169解:(1)答对题目数小于9的人数为55,记“答对题目数大于等于9”为事件A,P(A)10.45.(2)设答对题目数小于8的司机为A,B,C,D,E,其中A,B为女司机,任选出2人包含AB,AC,AD,AE,BC,BD,BE,CD,CE,DE,共10种情况,至少有一名女出租车司机的事件为AB,AC,AD,AE,BC,BD,BE,共7种记“选出的2人中至少有一名女出租车司机”为事件M,则P(M)0.7.20(本小题满分12分)某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与
25、实验室每天每100颗种子浸泡后的发芽数,得到如下资料:日期3月1日3月2日3月3日3月4日3月5日温差x()101113128发芽数y(颗)2325302616(1)请根据3月2日至3月4日的数据,求出y关于x的线性回归方程x;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?解析(1)12,27,iyi977,434,27×123故所求的线性回归方程为yx3(2)当x10时,y×10322;当x8时,y×8317,与检验数据的误差都是1,满足题意,被认为(1)中所得的线性回归方程是可靠的21(本小题满分12分)(2017·山东文,16)某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游. (1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(2)若从亚洲国家和欧洲国家中各选1个,求这两个国家包括A1,但不包括B1的概率解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河北2025年河北省气象部门招聘应届毕业生(第三批)笔试历年参考题库附带答案详解
- 攀枝花2025年攀枝花市盐边县事业单位新一轮引才17人笔试历年参考题库附带答案详解
- 南京中医药大学翰林学院《外国文学经典》2023-2024学年第二学期期末试卷
- 云南林业职业技术学院《社会政策》2023-2024学年第二学期期末试卷
- 广州幼儿师范高等专科学校《汽车原理与构造》2023-2024学年第二学期期末试卷
- 绵阳飞行职业学院《中学生物学教学技能训练》2023-2024学年第二学期期末试卷
- 宿州学院《农产品营销与电子商务》2023-2024学年第二学期期末试卷
- 辽宁工业大学《数据分析导论》2023-2024学年第二学期期末试卷
- 湖北幼儿师范高等专科学校《中级英语阅读2》2023-2024学年第二学期期末试卷
- 东北大学《软件体系结构原理与方法》2023-2024学年第二学期期末试卷
- 《中国妇女妊娠期体重监测与评价》(T-CNSS 009-2021)
- 情境教学法在初中函数教学中的实践研究
- 2025年春季1530安全教育记录主题
- 初中语文教师校本培训内容
- 2024年国家公务员考试行测真题附解析答案
- 店长晋级管理制度内容
- 2024年医美行业痛点分析研究报告
- 云安全事件案例
- DB64-266-2018:建筑工程资料管理规程-151-200
- 《兽医产科学》考试复习题库(含答案)
- 《反对邪教主题班会》课件
评论
0/150
提交评论