




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、附录三 外文翻译外文翻译计算流体动力学和动态耦合热力学软件在顶吹转炉中的应用Mikael ERSSON, Lars HÖGLUND, Anders TILLIANDER,Lage JONSSON and Pär JÖNSSON应用程序冶金部,皇家技术学院(KTH)SE-10044,瑞典首都斯德哥尔摩。(2007年11月8日收到,2007年12月10日接受)一种新的建模方法被提出,这种建模方法是使用计算流体力学软件相连结热力学数据库以获取动态模拟冶金过程的现象。这种建模方法已被应用在一个基本的氧气顶吹转炉模型。通过各种气体之间的反应研究。 结果表明,大量的表面气体的
2、流通是完全受对流控制的。此外,在这个过程中大量产生的CO脱碳可能会放慢从浴缸喷出的液滴的脱碳率。在目前的模拟反映实验室的实验条件下,这点也被证实在这个过程中所产生的炉渣(FeO和/或SiO2)接近于零,即只产生的气体(二氧化碳CO2)就好比是氧气射流击中钢液。它也说明如何从几秒钟的采样推算脱碳速度, 只要是含碳量足够的高可以在后期的时候做含碳量的模拟,从而得到的碳含量的粗略估计。总的结论是,通过Thermo-Calc的数据库和CFD软件的动态耦合来达到冶金动态模拟是有可能的。关键词:转炉;计算流体力学,热力学建模;炉渣和动态模拟。介绍在许多涉及氧气喷射撞击到钢液面的冶金过程中,为了优化涉及动力
3、学的部分,如脱碳,底层流体动力学是需要的。现在对于这个问题已经几个实验报告和一些数值或计算流体动力学(CFD)的报告。Szekely and Asai已经介绍了一种将液体的冲击射流表面的计算模型。Ngyen and Evans通过使用这种方法计算溶池喷嘴直径比液体表面所造成变形的冲击射流的影响,张等人模仿了一种同时使用顶吹和底吹复合吹炼的情况。Odenthal等人展示了一种顶吹转炉多相CFD模型,在这种顶吹转炉中由于冲击射流以及底部和顶部转换混合时存在飞溅现象。Nakazono等人描述了铁液表面的超音速氧气喷射冲击时的含碳量的两阶段的数值分析。通过计算表明在真空和表面处理条件下天然气和钢铁之间
4、的变化。该模型采用稳态方法无飞溅等。在其他文献中还其他非顶吹CFD模型介绍,琼森等。提出了硫精炼耦合计算流体力学和热力学模型热力学是成立的在CFD程序中作为一个自定义的子程序,尤其是专门为调查系统所写的子程序。图中1可以看到这样的做法一个示意图。图1。合并计算流体力学和热力学建模与数值模型方法的示意图。由文献(14)最近包含顶吹系统CFD模型已经出现并和实验数据进行比较,这里提出,这个模型是包括气/液/渣的流体体积(VOF)等反应扩展的一个多相流模型,这个模型适用于顶吹系统。这个模型以及各个阶段的扩展已经获得批准使用这一方法所建的装备使得终于有一个可以说明基本的顶吹转炉模型结果。2。数值模型目
5、前的建模方法如图2所示。图2。合并数值模型方法的示意图为了解决新的研究可以轻易的合并到这个模型的问题建立了以模块化的方式,这也意味着,当从一个系统变到另一个系统是只需要一个很小的重编程程序,只要是热力学数据在目前的热力学数据库中是存在的以及不超过CFD软件的运算能力。这个模拟过程已经在包含6个节点的集群的Linux PC上执行。现实生活中的模拟时间是和运算系统的数量相关的,所以没有固定和典型的模拟时间;它可能会在一小时和10天的实时变化亦或是10秒的时间。在图3中可以看出其物理域和数值域的原理。图3。顶吹转炉示意图。 a)物理域b)数值域。所涉及的边界条件为入口速度,出口压力,无滑墙壁和对称轴
6、。所有的墙壁都用标准壁面函数表示,合理的ke模型已使用在所有的例子中。域的宽度为0.075米,高度是0.13米。最开始,1500°C的15.6公斤距顶枪0.01米以上的钢熔液用来试验,大量的气体从入口吹入相当于25升/分钟的纯体积流量氧气。用于模拟的表1中的各种参数可以看出和表2中的初始浓度的不同。表1.不同阶段密度和扩散系数表2.初始浓度2.1。差价ANSYS软件同时也被使用,这是一个为计算求解流体体积、质量的有限元分析软件,这样动量守恒方程中所涉及的质量、体积都得到了解决。根据湍流模型同时使用了一些额外的守恒方程作为补充,例如湍流动能守恒,k,和动荡能量耗散,e,都是用标准的k-
7、e 模型,下面的公式用来计算任何形式的这里r是密度,u是指速度矢量,当基于雷诺兹平均使用湍流模型,G是扩散系数,正如从表3中看到的一样方程(1)和表3描述了质量、动量、湍流动能,动荡能量耗散、能量、物质和体积分数。表3守恒方程参数2.2热计算为了获得准确描述了热力学特征,软件Thermo-Calc被使用使用。这是一个通用的软件方案的多组分的相平衡计算。它使用一种技术,它允许非常灵活的设置条件的平衡状态,从而适用过程模拟。问题的解决方法是以下。第一,质量和热量含量分别计算每个阶段。然后,总质量和热量的内容是总结。该系统是氢原子核装备中的。最后,程序将计算各阶段温度,新的成分和含量。能与热力学的软
8、件应用程序编程接口使用TQ操作。这个接口是一个接口Thermo-Calc中可用的软件包,使其能要推广实施不同系统(例如组件和元素,该系统由),而无需更改代码。2.3. 耦合和假设其目在于CFD-package和Thermo-Calc数据库软件两个软件的耦合,是创建一个通用的计算模型,包括化学反应冶金系统。在下面的文本描述的耦合。主要的假设是局部均衡、每个时间步可以到达每个计算单元的过程中,。软件之间的接口CFD-package和热力学数据库分别被编码在C和FORTRAN。2.4多相考虑所有的散装阶段的建模为不可压缩;有统一的密度,见表1。与一个精化的模型应该有可能使用一个理想气体定律假设对气态
9、和一些温度对钢密度模型的依赖。简要地说明一些细节的功能假设一摩尔的氧和碳反应形成的融化2摩尔的一氧化碳。在计算单元在考虑将会有一个扩张的气相到约两倍于原体积。这反过来将很可能意味着气体向外扩张的计算单元。如果再加上CFD,扩张将发生在以下步骤中,作为额外的气体质量被添加到细胞源项。经过计算细胞已经达到平衡它也将会有一个特定的温度平衡温度。3.结论3.1.基本顶级吹转炉在图5显示气体射流向量的情况,正如水落在钢铁溶液中所显示的那样。这是看到射流失去其轴向冲击就好像其滴落在刚溶液表面。从射流中来的低流量给出了一个相对较小的渗透率在钢铁溶液中。图6说明了流场的钢铁浴引起碰撞射流。目前的最高速度的射流
10、冲击的钢液面和面积。流体措施阻止了渗透区向墙壁,然后进入到钢液中。一个大型的循环,循环中形成的冲击流(即轴和墙之间)和几个小的循环回路。应该指出的是,在更大的循环级速度是非常小的。这是由于低流量来自高层的射击流。更高的流率呈现较大的渗透和较强的循环。图5.在气体速度矢量。矢量有固定长度;他们是由色彩反映速度级(m / s)。图6.速度向量在钢液中的变现,矢量有固定长度;他们速度级有色彩反映图7展示了碳在1、2、3和5s时在钢液里的浓度。首先气体的射流量应该注意,只有在相当狭窄的范围内才能看到的结果。这是故意为了使少量浓度的差异在一定范围内可见。同时可以看到图7(a),碳浓度梯度存在于一个小区域
11、接近自由面面积以及在一个更大的地区的右边的渗透区当仔细观察图7时。7(a)-7(d),它的变化就会更明显,规模更大的向炉壁发展混合,且随着时间变得更大。从图之间可以看到碳浓度在不断地减小。从7(a)-7(d)看来,钢液实在表面混合运动(参见图6),随后由于循环模式出现在中下部出现,而且呈现紊流的混合。碳浓度高的钢的深度只有几毫米的渗透区;然而真正的大梯度出现在一个更薄的地区靠近自由表面。渐渐地,随着流场的发展,再循环趋向炉壁。图7a.钢中碳的质量分数.1 s模拟时间图7 b.钢中碳的质量分数.2 s模拟时间图7 c.钢中碳的质量分数.3s模拟时间图7 d.钢中碳的质量分数.5s模拟时间图8.C
12、O的质量分数5s模拟时间。图8展示了在气相中CO气体浓度呈现的规律。射流所覆盖的钢液的表面几乎完全充满氧气所以几乎没有CO的存在,除了一个薄层旁边的钢液表面。CO气体数量则会变得更明显的逐渐减少距离炉壁附近。4.结论一个新的建模方法,提出了采用CFD软件已经耦合热力学数据库(Thermo-Calc)使用自定义子例程获得动态模拟冶金过程的现象。gas-steel之间的反应,gas-slag,steel-slag和gas-steel-slag一直被认为在一个基本的模型顶吹转炉。 最后的结论是,它可能是一个动态的耦合Thermo-Calc数据库和CFD软件进行动态模拟的冶金过程如顶吹转炉。具体的结论
13、来自高层的吹转炉模拟包括:(1)紊流扩散的气体中不可忽视的要考虑射流冲击面积的影响。(2)大量一氧化碳脱碳期间可能会减慢钢液中钢的脱碳速度。(3)可以使用脱碳速度的推断,对一个几秒钟的仿真,得到的粗略估计碳含量在随后阶段过程中只要碳含量相对较高(比较下一点)。(4)对当前系统来说,大约3%碳在钢的初始的渣中。FeO或二氧化硅了接近于零即只要气体(COCO2)在钢液中的含量足够的多。找出浓度的结合,流动速率和温度下,呈现最高效脱碳,未来会有更进一步的参数研究。确认这个工作是由瑞典财政支持战略研究基金会(SSF)和瑞典钢铁行业通过热力学计算中心(CCT)进行的。参考文献1) E. T. Turkd
14、ogan: Chem. Eng. Sci., 21 (1966), 1133.2) N. A. Molloy: J. Iron Steel Inst., (1970), Oct., 943.3) T. Kumagai and M. Iguchi: ISIJ Int., 41 (2001), S52.4) A. Nordquist, N. Kumbhat, L. Jonsson and P. Jönsson: Steel Res. Int., 2 (2006), 82.5) B. Banks and D. V. Chandrasekhara: J. Fluid Mechanics, 1
15、5 (1963), 13.6) A. Chatterjee and A. V. Bradshaw: The Interaction Between Gas Jets and Liquids, Including Molten Metals, 314.7) M. Ersson, A. Tilliander, M. Iguchi, L. Jonsson and P. Jönsson: ISIJ int., 46 (2006), No. 8, 1137.8) J. Szekely and S. Asai: Metall. Trans, 5 (1974), 464.9) A. Nguyen
16、and G. Evans: 3rd Int. Conf. on CFD in the Minerals andProcess Industries CSIRO, Melbourne, Australia, (2003), 71.10) J.-Y. Zhang, S.-S. Du, S.-K. Wei: Ironmaking Steelmaking, 12 (1985), 249.11) H.-J. Odenthal, U. Falkenreck and J. Schlüter: European Conf. onComputational Fluid Dynamics, the Ne
17、therlands, (2006).12) D. Nakazono, K.-I. Abe, M. Nishida and K. Kurita: ISIJ Int., 44 (2004), 91.13) M. Ersson, A. Tilliander, and P. Jönsson: Proc. Sohn Int. Symp Advanced Processing of Metals and Materials, ed. by F. Kongoli and R. G. Reddy, TMS, San diego, USA, Aug 2731, (2006), p. 271.14) L
18、. Jonsson, D. Sichen and P. Jönsson: ISIJ Int., 38 (1998), 260.15) L. Jonsson: PhD Thesis, Dept. of Metallurgy, KTH, Sweden, (1998).16) L. Jonsson, P. Jönsson, S. Seetharaman and D. Sichen: Proc. of 6th JapanNordic Countries Steel Symp., ISIJ, Tokyo, (2000), 77.17) C. W. Hirt and B. D. Nic
19、hols: Comput. Physics, 39 (1981), 201.18) B. E. Launder and D. B. Spalding: Comp. Meth. Appl. Mech. Eng., 3 (1974), 269.19) Fluent Users Manual, (2007).20) T.-H. Shih, W. W. Liou, A. Shabbir, Z. Yang and J. Zhu: Computers Fluids, 24 (1995), 227.21) J.-O. Andersson, T. Helander, L. Höglund, P. S
20、hi, and B. Sundman: Calphad, 26 (2002), 273.22) A. Nordquist, A. Tilliander and P. Jönsson: Proc. 5th European Oxygen Steelmaking conf., Aachen, Germany, (2006), 519.Dynamic Coupling of Computational Fluid Dynamics and Thermodynamics Software: Applied on a Top Blown ConverterMikael ERSSON, Lars
21、 HÖGLUND, Anders TILLIANDER, Lage JONSSON and Pär JÖNSSONDivision of Applied Process Metallurgy, Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden.(Received on November 8, 2007; accepted on December 10, 2007)A novel modeling approach is presented where a computational f
22、luid dynamics software is coupled to thermodynamic databases to obtain dynamic simulations of metallurgical process phenomena. The modeling approach has been used on a fundamental model of a top-blown converter. Reactions between gassteel, gasslag, steelslag and gassteelslag have been considered. Th
23、e results show that the mass transport in the surface area is totally controlled by convection. Also, that a large amount of CO produced during the decarburization might slow down the rate of decarburization in droplets ejected from the bath. For the present simulation conditions reflecting laborato
24、ry experiments, it was also seen that the amount of slag (FeO and/or SiO2) created is close to zero, i.e. only gas (CO_CO2) is created as the oxygen jet hits the steel bath. It was also illustrated how an extrapolation of the decarburization rate, sampled from a few seconds of simulation, could be d
25、one to get a rough estimate of the carbon content at a later stage in the process as long as the carbon content is relatively high. The overall conclusion is that it is possible to make a dynamic coupling of the Thermo-Calc databases and a CFD software to make dynamic simulations of metallurgical pr
26、ocesses such as a top-blown converter.KEY WORDS: BOF; CFD; thermodynamics; modeling; slag and dynamic simulations.1. IntroductionIn many metallurgical processes involving an oxygen-jet impinging onto a steel bath surface, a good understanding of the underlying fluid dynamics is desirable in order to
27、 optimize the involved kinetics such as decarburization. There have been several experimental reports on the subject for instance17) and also some numerical or Computational Fluid Dynamics (CFD) reports.813) Szekely and Asai8) presented a computational model of a jet impinging onto a liquid surface.
28、 Ngyen and Evans investigated the effect the nozzle-to-pool diameter ratio had on the deformation of the liquid surface caused by an impinging jet, using a computational model.9) Zhang et al. modeled a combined blown case where a top jet as well as a submerged jet was employed. 10) Odenthal et al. s
29、howed a multiphase CFD model of a top blown converter where splashing phenomena due to the impinging jet was investigated as well as the mixing time in the converter due to bottom and top blowing.11) Nakazono et al. described a two-phase numerical analysis of a supersonic O2-jet impinging on a liqui
30、d iron surface containing carbon.12) The calculations were performed under vacuum and addressed surface chemistry between the gas- and the steel-phase. The model used a steady state approach without treatment of splashing, ripples etc. There are also other non top blowing CFD models presented in the
31、 literature that address chemical reactions in metallurgical systems, see for instance.14,15) Jonsson et al. presented a coupled CFD and thermodynamics model of sulfur refining in a gas-stirred ladle.14) The thermodynamics was incorporated in the CFD program as a custom subroutine specifically writt
32、en for the investigated system. A schematic of such an approach can be seen in Fig. 1. Recently a CFD model consisting of a top blown system has been presented and compared to experimental data.13) Here an extension to this model is presented which includes reactions i.e. a gas/liquid/slag Volume of
33、 Fluid (VOF)17) multiphase model, for a top blown system. Reactions between all phases have been allowed as well as expansion/ contraction associated with the creation or destruction of phases in the computational cells. The methodology of the setup is shown and finally some illustrative results of
34、a fundamental top blown converter model are presented.2. Numerical ModelThe current modeling approach is seen in Fig. 2. It is built in a modular fashion in order to ease the incorporation of new research into the model. This also means that very little reprogramming is necessary when changing from
35、one system to another, as long as the thermodynamic data is present in the thermodynamic database and the capabilities of the CFD software is not exceeded. The simulations have been performed on a Linux PC cluster containing 6 nodes. The real-life simulation time has been highly dependent on the num
36、ber of Thermo-Calc calls performed so no typical simulation time can be given; it varies between one hour and ten days real-time for a 10 sFig. 1. Schematic of a numerical model approach with combined CFD and thermodynamics modeling. From Ref. 14).Fig. 2. Schematic of a numerical model approach with
37、 combined CFD and thermodynamics modeling. Modular approach that uses databases from the Thermo-Calc software.Fig. 3. Schematic of top blown converter. a) Physical Domain b) Numerical Domain.simulation. In Fig. 3 a schematic of the physical and numerical domains can be seen. The boundary conditions
38、used are velocity inlet, pressure outlet, no-slip walls and symmetry axis. Standard wall functions have been used for both walls.18,19) The realizable ke model20) has been used in all examples. The domain width is 0.075 m and the height is 0.13 m. Initially, a 15.6 kg steel-melt is introduced with a
39、 temperature of 1 500°C. From the top lance, placed 0.01 m above the steel, a mass flow inlet was specified corresponding to a volumetric flow rate of 25 L/min of pure oxygen. In Table 1 various parameters used in the simulation can be seen and in Table 2 the initial concentrations of the diffe
40、rent species are shown.2.1. CFDThe Ansys Fluent software has been used which is a commercial finite volume solver used for computational fluid dynamics.19) Conservation equations of mass, momentum, energy and species are solved. Depending on the turbulence model used some extra conservation equation
41、s are added, for instance conservation of turbulence kinetic energy, k, and turbulence energy dissipation, e , as prescribed in the standard ke model.18) The following form is used for transport of any property f :where r is the density, u is the mean velocity vector, when using a turbulence model b
42、ased on Reynolds Averaging, G is the diffusion coefficient and Sf is the source term, as can be seen in Table 3. Equation (1) and Table 3 describes the transport of; mass, momentum, turbulence kinetic energy,turbulence energy dissipation, energy, species and volumefraction.2.2. Thermo-CalcIn order t
43、o obtain an accurate description of the thermodynamics the software Thermo-Calc21) is used. This is a general software package for multi-component phase equilibrium calculations. It uses a technique that allows for a very flexible setting of conditions for the equilibrium state thus being suitable f
44、or use with process simulations. The method of solution is the following. First, the massand heat content in each phase is calculated separately. Then, the total mass and heat content is summed up. The system is thereafter equilibrated. Finally, the program calculates the temperature, new compositio
45、ns and amounts of the phases. To communicate with the thermodynamic software anapplication programming interface TQ21) is used. This interface is one of the interfaces available within the Thermo- Calc software package21) and makes it possible to generalize the implementation of different system (e.
46、g. the components and elements that the system consists of) withoutchanging the code.2.3. Coupling and AssumptionsThe aim with the coupling of the two softwares, the CFD-package and the Thermo-Calc database software, is to create a general numerical model for metallurgical systems including chemical
47、 reactions. In the following text the coupling will be described. The major assumption is that localequilibrium can be reached in each computational cell during the course of each time step. The software interface between the CFD-package and the thermodynamic databases is coded in C and FORTRAN, res
48、pectively.2.4. Multiphase ConsiderationsAll bulk phases have been modeled as incompressible; having uniform density, see Table 1. With a refinement of the model it should be possible to use an ideal gas law as- sumption for the gas phase and some temperature and composition dependent density model f
49、or the steel and the slagphases. To briefly explain some specifics of the functionalityassume that one mole of oxygen reacts with carbon in the melt to form 2 mole of carbon monoxide. In the computational cell under consideration there will be an expansion of the gas phase to roughly twice the origi
50、nal volume. This in turn will most likely mean that the gas expands outsidethe computational cell. When coupled with CFD, the expansion will occur in the following time step, as the extra gas mass is added to the cell as source term. After a computational cell has reached equilibrium it will also ha
51、ve a specific temperaturethe equilibrium temperature. Assumptions:a) Thermodynamic equilibrium can be reached in each cell during any time step.b) The densities of gas/steel/slag are constant in time and space.c) Equilibrium needs only to be calculated in cells containing at least two phases. A sche
52、matic of the coupling and the solution procedure can be seen in Fig. 4.Fig. 5. Velocity vector plot in gas. Vectors have a fixed length; instead they are colored by velocity magnitude (m/s).Fig. 6. Velocity vector plot in the steel. Vectors have a fixedlength; instead they are colored by velocity ma
53、gnitude(m/s).Fig. 7a. Mass fraction of carbon in steel. 1 s simulation time.Fig. 7b. Mass fraction of carbon in steel. 2 s simulation time.Fig. 7c. Mass fraction of carbon in steel. 3 s simulation time.Fig. 7d. Mass fraction of carbon in steel. 5 s simulation time.Fig. 8. Mass fraction of CO in the
54、gas phase. 5 s simulation time.3. Results3.1. Fundamental Top Blown ConverterIn Fig. 5 vector plot showing the gas jet, as it impinges on the steel bath, is shown. It is seen that the jet looses its axial momentum as it hits the bath surface. The low flow rate from the lance gives a relatively small
55、 penetration in the steel bath. Figure 6 illustrates the flow field in the steel bath caused by the impinging oxygen jet. The highest velocities are present where the jet hits the bath and in the surface area. The fluid moves from the penetration zone towards the wall and then down into the bath. A
56、large re-circulation loop is formed in the center of the bath (i.e. between the axis and the wall) and several small re-circulation loops are formed close to the surface. It should be noted that the velocity magnitude in the larger loop is very small. This is attributed to the low flow rate from the
57、 top lance. Higher flow rates render larger penetration and a stronger bath circulation.Figure 7 illustrates the carbon concentration in the bath at times 1, 2, 3 and 5 s. First of all the plotting limits should be noted, where it can be seen that the range of the plot is quite narrow. This is inten
58、tional in order to make the small concentration differences visible over the range of plottingcolors used. It can be seen from Fig. 7(a) that a carbon concentration gradient exists in a small region close to the free surface area as well as in a larger region to the right of the penetration zone. Wh
59、en examining Figs. 7(a)7(d) it becomes evident that the larger region moves towards the wallof the converter and that it also becomes larger with time. The carbon concentration in the moving region slowly decreases between Figs. 7(a)7(d). It seems that the decarburized steel is transported along the su
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 配电安规习题+参考答案
- 河南省上蔡一高2025年高三3月份模拟考试英语试题含解析
- 机修钳工(设备钳工)复习题及答案
- 浙江省宁波四中2025届高三下学期第五次调研考试英语试题含解析
- 2025年福建省厦门二中高考考前模拟英语试题含答案
- 江苏省连云港市海州区2024-2025学年高一下学期4月期中学业水平质量监测化学试题(原卷版+解析版)
- 纸容器食品安全包装要求与检测考核试卷
- 管道工程绿色施工技术创新动态与发展趋势考核试卷
- 美容仪器电路设计与优化案例分析考核试卷
- 航空物流企业的供应链金融创新考核试卷
- 《三国演义》之刘备有感
- 连续油管技术理论考核试题
- 穴位埋线疗法疗法
- 睾丸附睾炎护理
- 卡西欧dh800电吹管说明书
- 3Q设备验证文件
- 流式细胞术(免疫学检验课件)
- 急危重症护理PPT高职完整全套教学课件
- 浙江公路技师学院工作人员招聘考试真题2022
- 《大道之行也》比较阅读12篇(历年中考语文文言文阅读试题汇编)(含答案与翻译)(截至2020年)
- 螺旋输送机的设计大学论文
评论
0/150
提交评论