机器学习_Lymphography Data Set(淋巴系造影术数据集)_第1页
机器学习_Lymphography Data Set(淋巴系造影术数据集)_第2页
机器学习_Lymphography Data Set(淋巴系造影术数据集)_第3页
机器学习_Lymphography Data Set(淋巴系造影术数据集)_第4页
机器学习_Lymphography Data Set(淋巴系造影术数据集)_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Lymphography Data Set(淋巴系造影术数据集数据摘要:This lymphography domain was obtained from the University Medical Centre, Institute of Oncology, Ljubljana, Yugoslavia. (Restricted access中文关键词:淋巴系造影术,多变量,分类,UCI,英文关键词:Lymphography,Multivariate,Classification,UCI,数据格式:TEXT数据用途:This data set is used for classificat

2、ion.数据详细介绍:Lymphography Data SetAbstract: This lymphography domain was obtained from the University Medical Centre, Institute of Oncology, Ljubljana, Yugoslavia. (Restricted access Source:Donors:1. Igor Kononenko,University E.KardeljFaculty for electrical engineeringTrzaska 2561000 Ljubljana (tel.:

3、(38(+61 265-1612. Bojan CestnikJozef Stefan InstituteJamova 3961000 LjubljanaYugoslavia (tel.: (38(+61 214-399 ext.287Data Set Information:This is one of three domains provided by the Oncology Institute that has repeatedly appeared in the machine learning literature. (See also breast-cancer and prim

4、ary-tumor.Attribute Information:- NOTE: All attribute values in the database have been entered as numeric values corresponding to their index in the list of attribute values for that attribute domain as given below.1. class: normal find, metastases, malign lymph, fibrosis2. lymphatics: normal, arche

5、d, deformed, displaced3. block of affere: no, yes4. bl. of lymph. c: no, yes5. bl. of lymph. s: no, yes6. by pass: no, yes7. extravasates: no, yes8. regeneration of: no, yes9. early uptake in: no, yes10. lym.nodes dimin: 0-311. lym.nodes enlar: 1-412. changes in lym.: bean, oval, round13. defect in

6、node: no, lacunar, lac. marginal, lac. central14. changes in node: no, lacunar, lac. margin, lac. central15. changes in stru: no, grainy, drop-like, coarse, diluted, reticular, stripped, faint,16. special forms: no, chalices, vesicles17. dislocation of: no, yes18. exclusion of no: no, yes19. no. of

7、nodes in: 0-9, 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, >=70Relevant Papers:Cestnik,G., Konenenko,I, & Bratko,I. (1987. Assistant-86: A Knowledge-Elicitation Tool for Sophisticated Users. In I.Bratko & N.Lavrac (Eds. Progress in Machine Learning, 31-45, Sigma Press.Web LinkClark,P. &

8、 Niblett,T. (1987. Induction in Noisy Domains. In I.Bratko & N.Lavrac (Eds. Progress in Machine Learning, 11-30, Sigma Press.Web LinkMichalski,R., Mozetic,I. Hong,J., & Lavrac,N. (1986. The Multi-Purpose Incremental Learning System AQ15 and its Testing Applications to Three Medical Domains. In Proceedings of

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论