


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、智能天线的发展及在TD-SCDMA中的应用 摘要智能天线是在自适应滤波和阵列信号处理技术的基础上发展起来的,是通信系统中能通过调整接收或发射特性来增强天线性能的1种天线。我国提交的第3代移动通信标准TD-SCDMA系统的关键技术之1就是智能天线技术,文章详细介绍了智能天线的历史及其发展,深入分析了智能天线在 TD-SCDMA中的运用,最后对智能天线的应用前景进行了展望。 1、智能天线的提出 智能天线是在自适应滤波和阵列信号处理技术的基础上发展起来的,是通信系统中能通过调整接收或发射特性来增强天线性能的1
2、种天线。它利用信号传输的空间特性,从空间位置及入射角度上区分所需信号与干扰信号,从而控制天线阵的方向图,达到增强所需信号、抑制干扰信号的目的;同时它还能根据所需信号和干扰信号位置及入射角度的变化,自动调整天线阵的方向图,实现智能跟踪环境变化和用户移动的目的,达到最佳收发信号,实现动态“空间滤波”的效果。采用智能天线的目的主要有以下3点:a)通过提供最佳增益来增强接收信号。b)通过控制天线0点来抑制干扰。c)利用空间信息增大信道容量。 最早的智能天线是出现在20世纪50年代的旁瓣对消天线,这种天线包含1个用于接收有用信号的高增益天线和1个或几个用于抑制旁瓣的低增益、宽波束天线。将几个这样的环路组
3、合成阵列天线,就构成自适应天线。随着阵列信号处理技术的发展,与智能天线有关的术语也越来越多,如智能天线(intelligent antenna)、相控阵(phased arrays)、空分多址(SDMA)、空间处理(spatial processing)、数字波束形成(digital beam forming)、自适应天线系统(adaptive antenna system)等,反映了智能天线系统技术的多个不同的方面。但总的来说,智能天线主要包含两类:开关波束系统和自适应阵列系统。两者中,只有自适应阵列系统能够在为有用信号提供最佳增益的同时,识别、跟踪和最小化干扰信号。 2、智能天线的发展现状
4、 早期智能天线的研究主要集中在军事领域,尤其是雷达领域,目的是在复杂的电磁环境中有效地识别和跟踪目标。随后,智能天线在信道扩容和提高通信质量等方面具备的独特优势吸引了众多的专家学者,日本、欧洲和美国的许多研究机构都相继开展了针对智能天线的众多研究计划,这也为智能天线的迅速发展奠定了基础。 2.1日本的智能天线发展 日本最早开始智能天线的研究是在20世纪70年代。到1987年,研究人员已经指出基于最小均方误差(MMSE)准则的自适应天线能够减小多径衰落,因而可以用于高速移动通信应用中。自此,日本学者展开了大量的针对移动通信环境的智能天线研究,包括自适应处理算法、数字波束形成方案、WCDMA 中的
5、多址干扰抑制方法,以及基站和移动终端上分别适用的智能天线类型等。其中,较早的有日本邮政电信部通信研究实验室的智能天线系统和NTT- DoCoMo公司研制的用于3G的UMTS W-CDMA体制的智能天线实验系统。前者工作于1.5 GHz,针对TDMA方式采用GMSK调制,数码率可达256 kbps。系统利用4阵元天线进行多径时延对消以消除多径衰落,权值更新采用恒模(CMA)算法在东京进行的实验表明:自适应天线技术在无线高速数据传输和存在选择衰落的情况下仍能很好地对消多径时延信号。后者则采用2D-RAKE接收机结合MMSE自适应波束形成算法进行处理。实验系统有3个小区基站用以评估切换和其他的网络功
6、能。实验结果表明,就平均误码率(BER)而言,智能天线比空间分集有明显改善。 此外,日本ATR光电通信研究所也研制了基于波束空间处理方式的多波束智能天线。天线阵元布局为间距半波长的16阵元平面方阵,射频工作频率是 1.545GHz。阵元组件接收信号在经过低噪声放大、下变频和模数变换后,进行快速傅氏变换(FFT)处理,形成正交波束后分别采用恒模(CMA)算法或最大比值合并分集(MRC)算法。野外移动试验确认了采用恒模算法的多波束天线功能。理论分析及实验证明使用最大比值合并算法可以提高多波束天线在波束交叉部分的增益。在此基础上,ATR的研究人员提出了基于智能天线的软件天线概念:根据用户所处环境不同
7、,影响系统性能的主要因素(如噪声、同信道干扰或符号间干扰)也不同,利用软件方法实现不同环境应用不同算法。比如当噪声是主要因素时,则使用多波束MRC算法,而当同信道干扰是主要因素时则使用多波束 CMA算法,以此提供算法分集,利用FPGA实现实时天线配景,完成智能处理。 随后,ATR研究所又针对移动通信中移动终端上适用的智能天线形式进行了大量探讨,最终提出了单端口电激励的ESPAR天线。该天线巧妙地利用了各阵元之间的耦合,在天线处实现了空间滤波。 2.4 软开关技术 高频化以后,为了提高开关电源的效率,必须开发和应用软开关技术。它是过去几10年国际电源界的1个研究热点。 PWM开关电源按硬开关模式
8、工作(开关过程中电压下降上升和电流上升下降波形有交叠),因而开关损耗大。高频化虽可以缩小体积重量,但开关损耗却更大了。为此,必须研究开关电压电流波形不交叠的技术,即所谓0电压开关(ZVS)0电流开关(ZCS)技术,或称软开关技术,小功率软开关电源效率可提高到800%85%。上世纪70年代谐振开关电源奠定了软开关技术的基础。随后新的软开关技术不断涌现,如准谐振(上世纪80年代中)全桥移相ZVS -PWM,恒频ZVS-PWMZCS-PWM(上世纪80年代末)ZVS-PWM有源嵌位;ZVT-PWMZCT-PWM(上世纪90年代初)全桥移相ZV-ZCS-PWM(上世纪90年代中)等。我国已将最新软开关
9、技术应用于6kW通信电源中,效率达93。 2.5 同步整流技术 对于低电压、大电流輸出的软开关变换器,进1步提高其效率的措施是设法降低开关的通态损耗。例如同步整流(SR)技术,即以功率MOS管反接作为整流用开关2极管,代替萧特基2极管(SBD),可降低管压降,从而提高电路效率。 2.6 功率因数校正(PFC)变换器 由于ACDC变换电路的输入端有整流器件和滤波电容,在正 弦电压输入时,单相整流电源供电的电子设备,电网侧(交流输入端)功率因数仅为0.6-0.65。采用功率因数校正(PFC)变换器,网侧功率因数可提高到0.950.99,输入电流THD<10。既治理了对电网的谐波污染,又提高了
10、电源的整体效率。这1技术称为有源功率因数校正(APFC),单相APFC国内外开发较早,技术已较成熟;3相APFC的拓扑类型和控制策略虽然已经有很多种,但还有待继续研究发展。 高功率因数ACDC开关电源,由两级拓扑组成,对于小功率ACDC开关电源来说,采用两级拓扑结构总体效率低、成本高。如果对输入端功率因数要求不特别高时,将PFC变换器和后级DCDC变换器组合成1个拓扑,构成单级高功率因数ACDC开关电源,只用1个主开关管,可使功率因数校正到0.8 以上,并使输出直流电压可调,这种拓扑结构称为单管单级PFC变换器。 2.7 全数字化控制 电源的控制已经由模拟控制,模数混合控制,进入到全数字控制阶
11、段。全数字控制是发展趋势,已经在许多功率变换设备中得到应用。 全数字控制的优点是数字信号与混合模数信号相比可以标定更小的量,芯片价格也更低廉;对电流检测误差可以进行精确的数字校正,电压检测也更精确;可以实现快速,灵活的控制设计。 近两年来,高性能全数字控制芯片已经开发,费用也已降到比较合理的水平,欧美已有多家公司开发并制造出开关变换器的数字控制芯片及软件。 2.8 电磁兼容性 高频开关电源的电磁兼容(EMC)问题有其特殊性。功率半导体器件在开关过程中所产生的didt和dvdt,将引起强大的传导电磁干扰和谐波干扰,以及强电磁场(通常是近场)辐射。不但严重污染周围电磁环境,对附近的电气设备造成电磁
12、干扰,还可能危及附近操作人员的安全。同时,电力电子电路(如开关变换器)内部的控制电路也必须能承受开关动作产生的EMI及应用现场电磁噪声的干扰。上述特殊性,再加上EMI测量上的具体困难,在电力电子的电磁兼容领域里,存在着许多交叉学科的前沿课题有待人们研究。国内外许多大学均开展了电力电子电路的电磁干扰和电磁兼容性问题的研究,并取得了不少可喜成果。 2.9 设计和测试技术 建模、仿真和CAD是1种新的设计研究工具。为了仿真电源系统,首先要建立仿真模型,包括电力电子器件、变换器电路、数字和模拟控制电路以及磁元件和磁场分布模型等,还要考虑开关管的热模型、可靠性模型和EMC模型。各种模型差别很大,建模的发
13、展方向是数字1模拟混合建模、混合层次建模以及将各种模型组成1个统1的多层次模型等。 电源系统的CAD,包括主电路和控制电路设计、器件选择、参数最优化、磁设计、热设计、EMI设计和印制电路板设计、可靠性预估、计算机辅助综合和优化设计等。用基于仿真的专家系统进行电源系统的CAD,可使所设计的系统性能最优,减少设计制造费用,并能做可制造性分析,是21世纪仿真和CAD技术的发展方向之1。此外,电源系统的热测试、EMI测试、可靠性测试等技术的开发、研究与应用也是应大力发展的。 2.10 系统集成技术 电源设备的制造特点是非标准件多、劳动强度大、设计周期长、成本高、可靠性低等,而用户要求制造厂生产的电源产品更加实用、可靠性更高、更轻小、成本更低。这些情况使电源制造厂家承受巨大压力,迫切需要开展集成电源模块的研究开发,使电源产品的标准化、模块化、可制造性、规模生产、降低成本等目标得以实现。 实际上,在电源集成技术的发展进程中,已经经历了电力半导体器件模块化,功率与控制电路的集成化,集成无源元件(包括磁集成技术)等发展阶段。近年来的发展方向是将小功率电源系统集成在1个芯片上,可以使电源产品更为紧凑,体积更小,也减小了引线长度,从而减小了寄生参数。在此基础上,可以实现1体化,所有元器件连同控制保护集成在1个模块中。 上世纪90年
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 加强班级自我服务能力的策略计划
- 急诊医患沟通技巧培训计划
- 学校文化与教学相结合计划
- 存货管理与控制措施计划
- 小学数学三年级下册《面积单位的认识》教学设计(北师大版)
- 2025年宿迁b2货运资格证全题
- 轻度撕裂的临床护理
- 2025-2030城市配送产业规划专项研究报告
- 2025年恩施货运资格证模拟考试题库下载
- 2025年酒泉道路货运运输从业资格证模拟考试
- 医师三级查房课件
- 卫生知识培训资料
- 2022年深圳市南山区教育系统招聘公办幼儿园副园长考试真题
- 综合实践活动《制作简易密度计》教案
- 物理学通俗演义
- 幼儿园安全教育课件:《嘴巴里的小精灵》
- 幼儿园小班语言公开课课件《小水珠找家》
- 第一章-波动方程
- 爱心与教育读后感1
- 中医养生保健服务规范(试行)
- 超全QC管理流程图
评论
0/150
提交评论