版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、声明:本资料由 考试吧(E) 收集整理,转载请注明出自 服务:面向校园,提供计算机等级考试,计算机软件水平考试,英语四六级,研究生考试 等校园相关考试信息。 特色:提供历年试题,模拟试题,模拟盘,教程,专业课试题 下载等。资料丰富,更新快! 考试交流论坛:考试吧(E)-第一个极力推崇人性化服务的综合考试网站!服务:面向较高学历人群,提供计算机类,外语类,学历类,资格类,四大类考试的全套考试信息服务.特色:极力推崇人性化服务!让您最便捷的在最短时间内得到对您最有价值考试信息!坚持每日更新!第三讲 多维随机变量及其分布考试要求1. 理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二
2、维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度.会求与二维随机变量相关事件的概率.2. 理解随机变量的独立性及不相关的概念,掌握随机变量相互独立的条件. 3. 掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义 . 4. 会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.一、 各种分布与随机变量的独立性1. 各种分布(1)一般二维随机变量 F (x, y)=P X x, Y y , x (, +), y (, +)的性质F (x, y)为联合分布函数 1) 0 F (x, y)1 , x (, +),
3、 y (, +); 2) F(, y )= F(x, )=0, F(+,+)=1;3) F (x, y)关于x, y 均为单调不减函数;4) F (x, y)关于x, y 均分别右连续. (2)二维离散型随机变量的联合概率分布、边缘分布、条件分布联合概率分布律 PX = xi , Y = yj = pi j , i, j =1, 2 , , pi j 0, .边缘分布律 pi = PX = xi =, i =1, 2 , , p j = P Y = yj =, j =1, 2 , , 条件分布律 PX = xi |Y = yj =, P Y = yj | X = xi =. 二维连续型随机变量
4、的联合概率密度、边缘密度和条件密度f(x, y)为联合概率密度 1 f(x, y)0, 2 .设( X, Y) f(x, y)则分布函数: ;边缘概率密度: , .条件概率密度: , . 2. 随机变量的独立性和相关性X和Y相互独立 F (x, y)= FX (x)F Y (y); pi j = pi p j (离散型) f (x, y)= f X (x)f Y (y) (连续型)【注】1 X与Y独立, f (x), g (x)为连续函数 f (X)与g (Y)也独立. 2 若X1, , Xm, Y1, , Yn相互独立, f , g分别为m 元与 n元连续函数 f (X1, , Xm)与g
5、(Y1, , Yn)也独立.3 常数与任何随机变量独立. 3. 常见的二维分布(1)二维均匀分布 (X, Y ) U (D), D为一平面区域. 联合概率密度为 (2)二维正态分布 (X, Y ) N (1 , 2, s12 ,s22, r ), 1, 2 0, s2 0, | r | 1. 联合概率密度为性质:( a ) X N (1, s12 ), Y N (2, s22 )( b ) X与Y相互独立 rX Y =0 , 即 X与Y不相关.( c ) C1X+C2Y N (C1 1+ C2 2, C12 s12 + C22s22 +2C1C2 r s1 s2 ).( d ) X关于Y=y的
6、条件分布为正态分布: 【 例1 】 设A,B为事件,且P(A), P(B|A), P(A|B) 令 X, Y(1) 试求(X, Y)的联合分布律;(2)计算Cov( X, Y );(3) 计算 .【 例2 】设随机变量X与Y相互独立,下表列出了二维随机变量(X, Y)联合分布律及关于X和关于Y的边缘分布律中的部分数值, 试将其余数值填入表中的空白处. Y X【 例3 】设随机变量X与Y独立同分布, 且X的概率分布为 记.(I)求(U, V)的概率分布;(II)求(U, V)的协方差Cov(U, V).【详解】(I)易知U, V 的可能取值均为: 1, 2. 且,故(U, V)的概率分布为: V
7、U1 212 0 (II) ,而 , .故 .【 例4】 设随机变量在区间(0, 1)上服从均匀分布, 在的条件下,随机变量在区间上服从均匀分布, 求()随机变量和的联合概率密度; ()的概率密度; ()概率. 二、 二维(或两个)随机变量函数的分布1分布的可加性(1)若XB(m, p), YB(n, p), 且X与Y相互独立,则 X+Y B (m+n, p).(2)若XP(1), YP(2), 且X与Y相互独立,则 X+Y P (1+2).(3)若XN(), YP(), 且X与Y相互独立,则 X+Y N ().一般地,若XiN(), i=1, 2, , n, 且X1,X2,Xn相互独立,则Y
8、=C1X1+C2X2+CnXn+C仍服从正态分布,且此正态分布为 其中C1,Cn为不全为零的常数.2. 两个随机变量函数的分布.【例5】 设X与Y相互独立, 且 则 【 例6】 设X与Y相互独立, 其密度函数分别为: 求Z2XY 的概率密度.【 例7】设二维随机变量(X, Y)的概率密度为 (I)求;(II)求Z+的概率密度.【详解】(I).(II)方法一: 先求Z的分布函数: 当z0时, ;当时, ;当时, ;当时, .故Z+的概率密度=方法二: ,当z 0 或z 2时, ;当时, ;当时, ;故Z+的概率密度【例8】 设随机变量X与Y相互独立, X有密度函数f (x), Y的分布律为 试求ZXY 的概率分布.声明:本资料由 考试吧(E) 收集整理,转载请注明出自 服务:面向校园,提供计算机等级考试,计算机软件水平考试,英语四六级,研究生考试 等校园相关考试信息。 特色:提供历年试题,模拟试题,模拟盘,教程,专业课试题 下载等。资料丰
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026届安徽省宣城市六校化学高三第一学期期中质量检测试题含解析
- 云南省西双版纳市2026届化学高三上期中达标检测试题含解析
- 2026届吉林省汪清县第六中学高一化学第一学期期末综合测试模拟试题含解析
- 2026届西藏拉萨市那曲二中化学高二上期末复习检测模拟试题含答案
- 2025中国教育人工智能应用市场现状及前景预测报告
- 量子逻辑熵研究-洞察及研究
- 递送系统调控药物释放减少毒性-洞察及研究
- 风能发电场建设低碳工艺-洞察及研究
- 跨境电商供应链模式-洞察及研究
- 轮胎橡胶环保再生技术-洞察及研究
- 2024年09月2024国家开发银行校园招聘笔试历年参考题库附带答案详解
- 2024-2025学年山东省青岛市高二上学期期中考试数学检测试卷(附解析)
- 2024年03月建信消费金融有限责任公司(中国建设银行)2024年度春季校园招考15名工作人员笔试历年参考题库附带答案详解
- 《ADHD诊断治疗》课件
- 大专口腔医学职业规划书
- 铁路职业生涯规划书
- 溶血性链球菌
- 雪茄知识及侍茄培训
- 电商平台退换货处理流程手册
- 钢结构高空作业安全施工方案
- 湖北省十堰市2024年七年级上学期语文期中考试试卷【附答案】
评论
0/150
提交评论