基于PLC在全自动洗衣机中的设计_第1页
基于PLC在全自动洗衣机中的设计_第2页
基于PLC在全自动洗衣机中的设计_第3页
基于PLC在全自动洗衣机中的设计_第4页
基于PLC在全自动洗衣机中的设计_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、目 录1 绪论11.1选题背景11.2 PLC的发展概况11.3全自动洗衣机发展概况22 PLC控制系统概述32.1 PLC控制系统的特点32.2 PLC的选型32.2.1 S7-200系列PLC的特点.42.2.2 S7-200系列PLC的编程语言.42.2.3 S7-200系列PLC定时器与计数器63 全自动洗衣机PLC控制系统程序设计83.1全自动洗衣机控制系统概述83.1.1 节水工作原理.83.2.设计特点93.3 硬件描述.93.4 软件设计.103.4.1 全自动洗衣机PLC控制方案.103.4.2全自动洗衣机PLC控制I/O地址分配表及外部接线图123.4.3 全自动洗衣机PL

2、C控制系统流程图.133.4.4全自动洗衣机PLC控制系统梯形图及语句表163.5故障检测.244 系统仿真25结论28致谢29参考文献301 绪论1.1选题背景 洗衣机是人们日常生活中常见的一种家电,已经成为人们生活中不可缺少的家用电器。在工业生产中应用也十分广泛。但是传统的基于继电器的控制,已经不能满足人们对洗衣机的自动化程度的要求了。洗衣机需要更好地满足人们的需求,必须借助于自动化技术的发展。而随着PLC技术的发展,用PLC来作为控制器,就能很好地满足全自动洗衣机对自动化的要求,并且控制方式灵活多样,控制模式可以根据不同场合的应用而有所不同。自动化技术的飞速发展使得洗衣机由初始的半自动式

3、洗衣机发展到现在的全自动洗衣机,又正在向智能化洗衣机方向发展。 1.2 PLC的发展概况 可编程序控制器自问世以来,发展极其迅速。1971年,日本开始生产可编程控制器,1973年,欧洲开始生产可编程控制器。到现在,世界各国的一些著名电器厂家几乎都在生产可编程控制器,可编程控制器已作为一个独立的工业设备进行生产,已成为当代电控装置的主导。 早期的可编程控制器主要由分立元件和中小规模集成电路组成,它采用了一些计算机技术,但简化了一些计算机的内部电路,对工业现场环境适应性好,指令系统简单,一般只有逻辑运算的功能。人们把它称之为可编程逻辑控制器(Programmable Logic Controlle

4、r)缩写为PLC。随着微电子技术和集成电路的发展,特别是微处理器和微计算机的迅速发展,在20世纪70年代中期,美国、日本、联邦德国等国的一些厂家在可编程控制器中引入微机技术,微处理器及其他大规模集成电路芯片成为其核心部件,使可编程控制器具有了自诊断功能,可靠性有了大幅度提高。国外工业界在1980年正式命名为可编程控制器(Programmable Controller),缩写为PC。但由于它和个人计算机(Personal Computer)的简称容易混淆,仍把可编程控制器缩写为PLC. 进入20世纪80年代,可编程控制器都采用了微处理器(CPU)、只读存储器(ROM)、随机存储器(ROM)或单片

5、机作为其核心,处理速度大大提高,增加了多种特殊功能,体积进一步减小。20世纪90年代末,PLC几乎完全计算机话,速度更快,功能更强,各种智能模块不断开发出来,使其不断扩展着它在各类工业控制过程中的作用。 近年来,可编程控制器发展更为迅速,更新换代周期缩短为3年左右。展望未来,可编程控制器在规模上和功能上将向两大方向发展:一是大型可编程控制器向高速、大容量和高性能方向发展。如有的机型扫描速度高达0.1mm/k字(0.1us/步),可处理几万个开关量I/O信号和多个模拟量I/O信号,用户程序存储器达十几兆字节;二是发展简易经济超小型可编程控制器,以适应单机控制和小型设备自动化的需要。另外,不断增强

6、PLC工业过程控制的功能,研制采用工业标准总线,使同一工业控制系统中能连接不同的控制设备,增强可编程控制器的联网通信功能,便于分散控制和集中控制的实现,大力开发智能I/O模块,增强可编程控制器的功能等都是其发展方向。 1.3全自动洗衣机发展概况 全自动洗衣机是一种除放、取衣物和开动洗衣机这三道手续外,其余洗衣各程序全部自动完成的设备。1874年美国的比尔布莱克斯通发明了木制手摇洗衣机,这是世界上第一台人工搅动洗衣机。1911年美国人又研制了世界上第一台电动洗衣机。1920年美国的玛依塔格公司又把洗衣机的木制桶改为铝制桶体,第二年又把铝制桶体改为外层铸铝、内层为铜板的双层结构。1936年,他们又

7、将搪瓷用于洗衣机桶体。与此同时,世界各地也相继出现了洗衣机。欧洲国家研究成功了喷流式洗衣机和滚筒式洗衣机。1932年后,美国一家公司研制成功了第一台前装式滚筒全自动洗衣机,洗涤、漂洗和脱水都在同一个滚筒内自动完成,使洗衣机的发展跃上了一个新台阶。这种滚筒洗衣机,目前在欧洲、美洲等地得到了广泛的应用。第二次世界大战结束后,洗衣机得到了迅速的发展,研制出具有独特风格的波轮式洗衣机。这种洗衣机由于其波轮安装在洗衣桶底,又称涡卷式洗衣机。近几十年,在工业发达国家,全自动洗衣机制造技术又得到迅速发展,其年总产量及社会普及率均以达到相当高得水平。目前世界洗衣机年总产量近5000万台,而全自动洗衣机的产量呈

8、增长趋势,在技术性能上正向着节水、节能、高效、结构合理的方向发展。微电脑控制功能、新型的洗涤方式、高速脱水以及低噪音等方面都有了很大提高。 (为防止抄袭,以省去下内容)图3-4 全自动洗衣机PLC控制系统顺序功能图(b)图3-5全自动洗衣机PLC控制梯形图(c)图3-5全自动洗衣机PLC控制梯形图(d)图3-5全自动洗衣机PLC控制梯形图(e)表3-5 全自动洗衣机PLC控制语句表序列号助记符操作数序列号助记符操作数001LDI0.0041LDM0.4002OM0.0042AT39003ANM0.1043OM0.5004=M0.0044ANM0.6005TONT37, +3000045=M0.

9、5006LDM0.0046TONT40, +20007AT37047LDM0.5008ANI0.1048AT40009OM0.1049OM0.6010ANM0.2050ANM0.7011=M0.1051=M0.6012LDM0.1052TONT41, +150013LDM0.2053LDM0.6014CTUC104, +5054AT41015LDM0.0055OM0.7016AI0.1056ANM1.0017LDM0.1057=M0.7018AC104058LDM0.7019OLD059LDM1.0020OM0.2060CTUC100, +15021ANM0.3061LDM0.7022=M0.

10、2062AC100023LDM0.2063OM1.0024AI0.6064ANM1.1025LDM0.7065=M1.0026ANC100066LDM1.0027OLD067LDM1.1028LDM1.0068CTUC101, +3029ANC101069LDM1.0030OLD070AC101031OM0.3071OM1.1032ANM0.4072ANM1.2033=M0.3073=M1.1034TONT38, +20074LDM1.1035LDM0.3075AI0.7036AT38076OM1.2037OM0.4077ANM1.3038ANM0.5078=M1.2039=M0.4079TO

11、NT42,+1200040TONT39, +150080LDM1.2序列号助记符操作数序列号助记符操作号081AT42119=M2.0082LDM2.2120LDM2.0083ANC103121LDM2.1084OLD122CTUC102, +5085OM1.3123LDM2.0086ANM1.4124AC102087=M1.3125OM2.1088LDM1.3126ANM2.2089AI0.6127=M2.1090LDM2.0128LDM2.1091ANC102129AI0.7092OLD130OM2.2093OM1.4131ANM2.3094ANM1.5132=M2.2095=M1.413

12、3TONT47, +1200096TONT43, +10134LDM2.2097LDM1.4135AT47098AT43136OM2.3099OM1.5137ANM2.4100ANM1.6138=M2.3101=M1.5139LDM2.3102TONT44, +100140LDM2.4103LDM1.5141CTUC103, +3104AT44142LDM2.3105OM1.6143AC103106ANM1.7144OM2.4107=M1.6145ANM2.5108TONT45, +10146=M2.4109LDM1.6147TONT48, +30110AT45148LDM2.4111OM1.

13、7149AT48112ANM2.0150AI0.2113=M1.7151OM2.5114TONT46, +100152ANM2.6115LDM1.7153=M2.5116AT46154=Q0.6117OM2.0155TONT49, +100118ANM2.1156LDM2.4 序列号助记符操作数序列号助记符操作数157AT48172LDM0.6158ANI0.2173OM1.7159LDM2.5174=Q0.2160AT49175LDM1.1161OLD176OM1.2162OM2.6177OM2.1163ANM0.0178OM2.2164=M2.6179=Q0.3165=Q0.7180LDM

14、1.2166LDM0.2181OM2.2167OM1.3182=Q0.4168=Q0.0183LDM1.5169LDM0.4184OM1.7170OM1.5186=Q0.5171=Q0.1 3.5故障检测 由于一些故障并非洗衣机内在得软件或硬件问题,而是由于用户自己操作不当而引起得。因此这类问题用户一般可以解决,根本不需要去请专业人员进行检修。表3-6为简单的故障及其原因。 表3-6 全自动洗衣机PLC控制系统故障及其原因故障代码异常现象故障原因E0启动预约后,运行停止上盖没盖E1不排水或排水过慢排水系统故障E2洗涤、漂洗、脱水时运行停止上盖没盖好E3安全开关动作、不脱水衣物放偏E4不进水或进

15、水缓慢进水阀故障E5操作失效水位传感器故障 4 系统仿真调试 S7-200的编程软件STEP7-Micro/WIN32可以方便地在Windows环境下对PLC编程、调试、监控,使得PLC的编程更加方便、快捷。还可用模拟软件对程序进行检验,以提高程序的准确性。为了便于系统仿真,将预约洗涤的时间调短为60秒、烘干时间调为2分钟, 并将洗涤次数和清洗次数设置为3次。具体分析如下: (1)电源开关I0.0使初始状态M0.0置位为1。 当I0.1断开,T37计时60s,当T37置位为1,状态转移M0.1。 当I0.1闭合,状态转移M0.2。 (2)状态转移到M0.1,C104计数,当计数器不够1-24次

16、时,状态转移到M0.0。 计数器满1-24次时,状态转移到M0.2。(3)如图4-1所示,当按下进水启动按扭I0.1,状态转移到M0.2,Q0.0立即得电。(图中RUN指示灯亮(RUN处左边为涂黑小方块)表示程序正在运行状态;按扭处数字1的指示灯亮(1处上方为涂黑小方块)表示按下的按扭为I0.1;输出处数字0的指示灯亮(0处上方为涂黑小方块)表示Q0.0得电,也就是模拟进水。)直到I0.6闭合,状态转移到M0.3。图4-1 全自动洗衣机PLC控制进水模拟演示图状态转移到M0.7,C100计数,当计数器不够15次时,状态转移到M0.3。 计数器满15次时,状态转移到M1.0。 状态转移到M1.0

17、,C101计数,当计数器不够3次时,状态转移到M0.3。 计数器满3次时,状态转移到M1.1。 (4)状态转移到M0.3,T38计时2s,当T38置位为1,状态转移到M0.4。 (5)状态转移到M0.4,启动Q0.1(电机正转),T39计时15s,当T39置位 为1,状态转移到M0.5。 (6)状态转移到M0.5,T38计时2s,当T40置位为1,状态转移到M0.6。 (7)如图4-2所示,状态转移到M0.6,Q0.2得电,T41开始延时15s,(图为程序运行状态,按扭处没有指示灯亮表示没有按任何按扭;输出处数字2的指示灯亮(2上方为涂黑小方块)表示Q0.2得电,也就是模拟电机正转;定时器的延

18、时状态不会在模拟图中显示。)直到T41置位为1,状态转移到M0.7。图4-2 全自动洗衣机PLC控制电机反转模拟演示图(8)状态转移到M1.1,启动Q0.3(排水),当I0.3闭合,状态转移到M1.2。 (9)状态转移到M1.2,启动Q0.3(排水)、Q0.4(脱水),T42计时30s, 当T42置位为1,状态转移到M1.3。 状态转移到M2.3,C103计数,当计数器不够3次时,状态转移到M1.3, 计数器满3次时,状态转移到M2.4。 (10)状态转移到M1.3,启动Q0.0(进水),当I0.2闭合,状态转移到 M1.4。 状态转移到M2.0,C102计数,当计数器不够5次时,状态转移到M

19、1.4。计数器满15次时,状态转移到M2.1。 (11)状态转移到M1.4,T43计时1s,当T43置位为1,状态转移到M1.5。 (12)状态转移到M1.5,启动Q0.1(电机正传)、Q0.5(喷淋式进水),T44 计时10s,当T44置位为1,状态转移到M1.6。 (13)状态转移到M1.6,T45计时1s,当T45置位为1,状态转移到M1.7。 (14)状态转移到M1.7,启动Q0.2(电机反转)、Q0.5(喷淋式进水),T46 计时10s,当T46置位为1,状态转移到M2.0。 (15)状态转移到M2.1,启动Q0.3(排水),当I0.3闭合,状态转移到M2.2。 (16)如图4-3所

20、示,状态转移到M2.2, Q0.3(排水)、Q0.4(脱水)得电,T47计时30s。(图为程序运行状态,按扭处没有指示灯亮表示没有按任何按扭;输出处数字3、4指示灯同时亮(3、4处上方均为涂黑小方块)表示Q0.3、Q0.4同时的电,也就是模拟排水和脱水。)直到T47置位为1,状态转移到M2.4。图4-3 全自动洗衣机PLC控制排水、脱水模拟演示图(17)状态转移到M2.4,T48计时3s,当I0.4断开,状态转移到M2.5。当I0.4闭合,状态转移到M2.5。 (18)状态转移到M2.5,启动Q0.6(烘干),T49计时120s,当T49置位为1时,状态转移到M2.6。 (19)状态转移到M2.6,启动Q0.7(自动停止),并返回初始状态。 (20)程序结束。 结论本设计选用PLC作为全自动洗衣机的控制核心,并根据其节水、节能、高效、结构合理的特点进行的程序设计。从而使洗衣机达到全自动工作(洗涤清洗脱水烘干)的控制过程。由于本设计是面向用户的家用电器,所以程序设计时在PLC硬件的选择上主要考虑的是它的性价比。本设计选择的PLC硬件都具有较高的性价比。本设计程序设计方法选择的是准确性较高的顺序控制法,通过洗衣机的工作过程、流程图进行程序设计。此设计

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论