均匀电场中球形介质的电场分布的Mathematica仿真课程设计说明书_第1页
均匀电场中球形介质的电场分布的Mathematica仿真课程设计说明书_第2页
均匀电场中球形介质的电场分布的Mathematica仿真课程设计说明书_第3页
均匀电场中球形介质的电场分布的Mathematica仿真课程设计说明书_第4页
均匀电场中球形介质的电场分布的Mathematica仿真课程设计说明书_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、课程设计说明书设计题目:半导体激光器可饱和吸收晶体被动调Q实现 学生学号: 1106020103 学生姓名: 陈丽 指导教师: 张科 起止日期: 2014.2014. 物理与电子信息系光电信息科学与工程专业摘 要本文首先利用分离变量法求解均匀电场中球形介质静电场的拉普拉斯方程,根据边界条件得出具体的分析解。然后,利用Mathematica程序求解均匀电场中球形介质的电场分布,并绘制电场的空间分布的矢量图。本文的特点是:数学上的分析解不能直观地给出静电场的矢量图;利用Mathematica程序绘制的电场空间分布的矢量图具有直观性。关键词:静电场的拉普拉斯方程;球形介质;Mathematica 仿

2、真目 录第1章 Mathematica 软件11.1 Mathematica 简介11.2 Mathematica 运算2第2章 分离变量法求解静电场42.1 拉普拉斯方程的分析解42.2 均匀电场中球形介质的电场分布5第3章 Mathematica 仿真7程序12参考文献14致谢15第1章 Mathematica 软件第1章 Mathematica 软件1. 1 Mathematica 简介Mathematica是美国Wolfram Research公司开发的数学软件。它的主要使用者是从事理论研究的数学工作者和其它科学工作者、以及从事实际工作的工程技术人员。Mathematica可以用于解决

3、各种领域的涉及复杂的符号计算和数值计算的问题。对以前必须借助于手工推导才能解决的问题, 现在可以很方便地用计算机来完成。Mathematica是一款科学计算软件,很好地结合了数值和符号计算引擎、图形系统、编程语言、文本系统、和与其他应用程序的高级连接。很多功能在相应领域内处于世界领先地位,截至2009年,它也是为止使用最广泛的数学软件之一。Mathematica的发布标志着现代科技计算的开始。Mathematica是世界上通用计算系统中最强大的系统。自从1988发布以来,它已经对如何在科技和其它领域运用计算机产生了深刻的影响。Mathematica主要可以做数值运算、符号运算和图像处理三项工作

4、。尤其在符号演算工作中,显示了它的强大功能。它能对符号进行多项式的计算、因式分解、展开,以及求解方程、极限、导数、积分等。它也能进行数值的或一般代数式的向量、矩阵的各种计算。用Mathematica可以很方便地画出用各种方式表示的一元和二元函数的图形。通过这样的图形,我们可以立即形象地把握住函数的某些特性,而这些特征一般很难从函数的符号表达式中看清楚。Mathematica还是一个很容易扩充和修改的系统,它提供了一套描述方法,相当于一个编程语言,用这个语言可以写程序,解决各种特殊问题。Mathematica和MATLAB、Maple并称为三大数学软件。1. 2 Mathematica 运算如果

5、在Windows环境下已安装好Mathematica 5.0,启动Windows后,在“开始”菜单的“程序”中单击 Mathematica 5.0,在屏幕上显示如图的Notebook窗口,系统暂时取名Untitled-1,直到用户保存时重新命名为止。Mathematica的基本语法特点:(1) Mathematica中大写小写是有区别的,如plot、Plot是不同的变量名或函数名。自定义的变量可以取几乎任意的名称,长度不限,但不可以数字开头。Mathematica中的函数分为两类,一类是常用的数学函数,如:绝对值函数Absx,正弦函数Sinx,余弦函数Cosx,以e为底的对数函数Logx,以a

6、为底的对数函数Loga,x等;第二类是命令意义上的函数,如作函数图形的函数Plotfx,x,xmin,xmax,解方程函数Solveeqn,x,求导函数Dfx,x等。(2) 在Mathematica中,我们应注意四种括号的用法:( )圆括号表示项的结合顺序 方括号表示函数,如Logx,BesselJx,1;大括号表示一个“表”(一组数字、任意表达式、函数等的;集合),如2x,Sin12 Pi,1+A,y*x; 双方括号表示“表”或“表达式”的下标,如a2,3、a,b,c1=a。(3) Mathematica还定义了一些系统常数,如Pi表示圆周率的精确值,还有E表示自然对数的底数、I表示复数单位

7、,Degree表示角度一度,Pi/180,Infinity表示无穷大等,这些常数在运算中发挥了重要的作用。(4) 乘法即可以用*,又可以用空格表示,如2 32*36 ,x y,2 Sinx等;乘幂可以用“”表示,如x4,Tanxy。(5) 在输入语句时, 以分号结束的语句行或表达式,Mathematica默认不显示计算结果,否则将输出计算的结果。(6) 要想查询某一函数的具体用法可在Notebook界面下,用 ?或 ? 可向系统查询运算符、函数和命令的定义和用法,获取简单而直接的帮助信息。也可用Options函数名 查询。 当然,要想主动地去了解更多的函数,可在Mathematica界面上单击

8、帮助菜单项的Help Browser, 可了解有关函数的更多信息。代数运算:(1)数的表示及计算在Notebook界面上,可以对大量数值进行计算,Mathematica总会以非常精确的形式输出结果。例如如果要想得到近似值可用求值函数Nexpr,n,expr是数值表达式,n是有效数值的位数。Mathematica许多函数直接可以用来做数值计算,例如求方程数值解函数NSolve、数值积分函数NIntegrate、数值求和函数NSum等等。(2)变量与变量赋值在Mathematica中,给变量赋值常用“=”表示,我们既可以给变量赋数字值,也可以给变量赋符号值。例如让x赋值5,而y赋值a。则在以后的运

9、算中,当需调用x或y的表达式时,Mathematica将用所赋的值替代它们, 例如如果你需要用到上一步的运算结果,可以用%代替整个上一步的运算结果,事实上, 你也可以用以前运算的第n次结果如%表示倒数第二次的运算结果。另一种变量赋值类似于变量的替换,用(/. ) 表示,例如在代数式4x2+2中进行x2的替换4x2+2/.x218表达式由代替x2-7x+3/.xa+b在同一行中可以输入多个语句, 语句之间用( ;)分开。当你需要Mathematica进行运算而不需要对结果输出时,可以在表达式后面放一个分号( ;)(3)函数的定义在Mathematica中,函数的定义是用“:=” 表示。例如fx_

10、:=x2+6定义以后,Mathematica会自动使用己定义的规则, 例如求x=a+b时的fx 值fa+b第2章 分离变量法求解静电场应用分离变量法求解拉普拉斯方程,具体的步骤是:首先在选定的坐标系下,将电位函数表示为三个未知函数的乘积,其中每个函数只含一个坐标变量。将三个未知函数般乘积代入拉普拉斯方程,从而分离出三个常微分方程,由它们的解的乘积可构成电位函数的级数形式通解。然后再根据绐定的边界条件来确定通解中的待定系数。2.1 拉普拉斯方程的分析解直角坐标系中拉普拉斯方程为 (2-1)设位函数V(x,y,z)为三个函数的乘积,即 (2-2)则可求得拉普拉斯方程的解为 (2-3) (2-4)

11、(2-5) (2-6)式中为分离常数,且满足 (2-7)需要指出的是,式中k可以是实数,也可以为虚数。应当指出中任何两个如为实数,其余一个必为虚数。即X(x),Y(y)和Z(z)中必有两个为三角函数而其余一个为双曲函数。有时将双曲函数解写成指数形式解是方便的。为满足边界条件,分离常数常常需取一系列值,形成级数解。若电位与某个量(如z)无关,则解的形式可简化成二维。在球坐标系中,标量电位V的拉普拉斯方程为 (2-8)当电位与方位角无关时,拉普拉斯方程的通解为 (2-9)为勒让德多项式,和是待定常数由具体问题的边界条件给出。2.2 均匀电场中球形介质的电场分布一半径为介电常数为的介质球放置在均匀电

12、场中。求介质球内、外的电位及电场。解:介质球外电位和球内电位满足拉普拉斯方程,它们都具有轴对称性,其通解分别为(2-10)(2-11)其中是待定系数。电位的边界条件是(1)(2)为有限值(3) 由边界条件(1)可得(2-12)由边界条件(2)可得(2-13)由边界条件(3)可得(2-14)所有常数已经确定,解为,。(2-15)第3章 Mathematica 仿真Mathematica 仿真程序如下。程序顶格,输出结果居中并标有公式数码。解:介质球外电位和球内电位满足拉普拉斯方程,它们都具有轴对称性,其通解分别为ClearGlobal*(2-16)电位的边界条件是(1)(2)为有限值(3) 由边

13、界条件可知,求和只需取至n=1的项。勒让德函数前两顶是和。电位的通解可以简化为(2-17)把电位代入边界条件(1)(2-18)比较系数知由边界条件(2)显然可知由边界条件(3)的第一条件(V1/.Ra)(V2/.Ra)(2-19)用Coefficient函数比较上方程的系数得方程eq1,比较上方程的系数得方程eq2(2-20)(2-21)由边界条件(3)的第二条件得(2-22)比较上方程的系数得方程eq3显然有结合方程eq3有联立求解eq1和eq3可求出和(2-23)把上面的解代入和就可求出球外电位和球内电位 V11=V1/.sol/First(2-24)V22=V2/.sol/First(2

14、-25)为求出电场强度需调用矢量分析软件包CalculusVectorAnalysis球外电场强度E1=Grad-V11,SphericalR,q,f/Simplify(2-26)球内电场强度E2=Grad-V22,SphericalR,q,f/Simplify(2-27)球内电位也可写为直角坐标形式在直角坐标形式下,球内电场强度E2=Grad-V22,Cartesianx,y,z(2-28)所以介质球内的电场强度是均匀场。把电场强度的球坐标形式转换为直角坐标形式, 再利用Mathematica图形函数可作出介质球附近电场线分布平面图如下。CalculusVectorAnalysisGraph

15、icsPlotFieldr2xRule=r,q,fCoordinatesFromCartesianx,y,z,Spherical/Thread;k=10(2-29)(2-30)由上面结果可定义球外电位和球内电位分别为根据公式,并用函数PlotGradientField和Plot3D分别绘制出介质球附近的电场线和介质球附近的等位面。PlotGradientField-v3z,x,z,-2.0,2.0,x,-2.0,2.0, ScaleFunction(3&),PlotPoints20图3-1 介质球附近的电场线Plot3Dv3z,x,z,-2,2,x,-2,2,PlotPoints30,BoxR

16、atios1,1,1图3-2 介质球附近的等位面由图3-2可以看出,图中有一圆型区域内的电位是相同的,这反映了介质球内的电场是匀强电场。程序Mathematica程序如下:ClearGlobal* ( V1 /. R a ) ( V2 /. R a ) V11=V1/.sol/First V22=V2/.sol/First CalculusVectorAnalysis E1=Grad-V11,SphericalR,q,f/Simplify E2=Grad-V22,SphericalR,q,f/Simplify E2=Grad-V22,Cartesianx,y,z CalculusVectorA

17、nalysis GraphicsPlotField r2xRule=r,q,fCoordinatesFromCartesianx,y,z,Spherical/Thread; k=10 PlotGradientField-v3z,x,z,-2.0,2.0,x,-2.0,2.0, ScaleFunction(3&),PlotPoints20 Graphics Plot3Dv3z,x,z,-2,2,x,-2,2,PlotPoints30,BoxRatios1,1,1 SurfaceGraphics参考文献1 郭硕鸿. 电动力学. 高等教育出版社,2008.2 杜建明. Mathematica 在电磁场理论中的应用. 合肥工业大学出版社,2004.3 美D. 尤金 (邓建松 译). Mathematica 使用指南. 科学出版社,2002.4 丁大正.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论