




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、南华大学高数练习册第一节 微分方程的基本概念1.填空题(1) 微分方程的阶是 (2) 若是微分方程的一个特解,则 , 3 2写出下列问题所确定的微分方程(1)已知曲线过点,其上任意一点处的切线的斜率为 ,求满足的微分方程.(2000题531)(2)由曲线上任意一点引法线,它在纵轴上截得的截距的长度等于该点到坐标原点的距离的2倍,求此曲线满足的微分方程. (2000题531)(3) 列车在水平直线路上以20m/s(相当于72km/h)的速度行驶; 当制动时列车获得加速度-0.4m/s2. 问开始制动后多少时间列车才能停住, 以及列车在这段时间里行驶了多少路程? 解 设列车在开始制动后t秒时行驶了
2、s米. 根据题意, 反映制动阶段列车运动规律的函数s=s(t)应满足关系式. (5)此外, 未知函数s=s(t)还应满足下列条件: t=0时, s=0, . (6)把(5)式两端积分一次, 得 ; (7)再积分一次, 得 s=-0.2t2 +C1t +C2, (8)这里C1, C2都是任意常数. 把条件t=0,v=20代入(7)得20=C1;把条件t=0,s=0代入(8)得0=C2.把C1, C2的值代入(7)及(8)式得 v=-0.4t +20, (9) s=-0.2t2+20t. (10)在(9)式中令v=0, 得到列车从开始制动到完全停住所需的时间(s).再把t=50代入(10), 得到
3、列车在制动阶段行驶的路程s=-0.2´502+20´50=500(m).第二节 可分离变量方程1. 填空题(1)微分方程满足条件的解是 .【答案】 应填【详解】由,得两边积分,得代入条件,得所以 (1) 微分方程 的通解为(3) 微分方程的通解是【分析】 本方程为可分离变量型,先分离变量,然后两边积分即可【详解】 原方程等价为,两边积分得,整理得.() 2. 求解下列可分离变量的微分方程(1) 解 分离变量得 两边积分得 故原方程的通解为 (2) 解 两边除以 ,并分离变量得两边分别积分得方程的通解为 (3) 分离变量得两边分别积分得微分方程的通解为(4)分离变量可得 两边
4、积分求得的通解为 ,即有. 第三节 齐 次 方 程1.填空题 (1) 微分方程的通解是 (2)已知函数满足微分方程,且在时,则时, 2.求解下列微分方程(1) 解 令 ,则有 两边积分得 原方程的通解为 (2) 解 方程可化为 令 ,则有 分离变量解之得 原方程的通解为 (3)解 另,则有分离变量两端积分得 原方程的通解为(4) 解 另 ,则方程化为分离变量两端积分得 故原方程的通解为 第四节 一阶线性方程1. 选择题(1) 下列为一阶线性方程的是( C )A B. C D.(2)*下列为伯努利方程的是( B)A B. C. D.2. 填空题(1) 满足的特解为(2) 微分方程满足的解为.【分
5、析】 直接套用一阶线性微分方程的通解公式: ,再由初始条件确定任意常数即可.【详解】 原方程等价为,于是通解为 =,由得C=0,故所求解为3.求解下列微分方程(1) 解 方程改写为 由一阶线性微分方程通解公式,得 即方程的通解为(2)解 原方程可改写为 由一阶线性微分方程通解公式, 因此,方程的通解为 (3)解 上方程变形为 由一阶线性微分方程通解公式,得 因此方程的通解为 第五节 可降阶的高阶微分方程1. 填空题(1) 微分方程的通(2) 经过变换,可化为一阶微分方程二、求解下列微分方程的通解(1)解对原方程两端连续两次积分得(2)解令,则原方程化为由一阶线性方程的通解公式,得.从而有两端积
6、分得到原微分方程的通解为3、求下列微分方程的通解(1) 【分析】这是二阶的可降阶微分方程.令(以为自变量),则代入方程得,即(或,但其不满足初始条件).分离变量得积分得即(对应);由时得于是积分得.又由得所求特解为(2)解令故,代入原方程化为两边积分得由初始条件解得,从而上式化简为两边积分得,由初始条件,可解得,因此,原方程的通解为第六节 高阶线性微分方程选择题(1). 若和是二阶齐次线性方程 的两个特解,则 (其中为任意常数) ( B )(A)是该方程的通解; (B)是该方程的解 (C)是该方程的特解 (D)不一定是该方程的解(2)设是方程 (*)的两个特解,则下列结论正确的是 ( D )
7、(A) 是(*)的解 (B) 是方程的解 (C) 是(*)的解 (D) 是方程的解(3).设是的解,伟任意常数,则该齐次方程的通解为( D )(A) (B) (C) (D)(4) 下列函数组线性无关的是( C )(A) (B) (C) (D) 第七节 常系数齐次线性微分方程1.填空题(1)设与是方程的两个解,则 (2) 在下列微分方程中,以(为任意的常数)为通解的是【 】(A) . (B) . (C) . (D) . 【答案】 应选(D).【详解】由,可知其特征根为,故对应的特征值方程为所以所求微分方程为应选(D).2.求解下列微分方程(1) 解 原方程的特征方程为 ,特征根为 方程的通解为.
8、(2)解 特征方程为 ,特征根为 ,方程的通解为.(3)解 特征方程为 ,特征根为,方程的通解为.第八节 常系数非齐次线性微分方程1.填空题若二阶常系数线性齐次微分方程的通解为,则非齐次方程满足条件的解为 。【答案】【解析】由常系数线性齐次微分方程的通解为可知,为其线性无关解。代入齐次方程,有从而可见。微分方程为设特解代入, 特解 把 , 代入,得 所求2.选择题(1)方程的一个特解形式是 ( ).(A) ; (B) ;(C) (D)(2)微分方程的特解形式为 ( D )(A) (B) (C) (D) 3.求解下列微分方程(1)解:特征方程是特征根对应齐次方程的通解是:设原方程的特解为:,则,
9、将其代入原方程待定系数得.所以 故原方程的通解为由解得 因此所求的特解是(2)求微分方程满足条件的特解.解:特征方程为:特征根为:对应齐次方程的通解是:设原方程的特解为:,将其代入原方程待定系数得.所以 故原方程的通解为由解得 因此所求的特解是.(3) 求微分方程的通解 【详解】齐次方程的特征方程为由此得对应齐次方程的通解为设非齐次方程的特解为 代入原方程得从而所求解为综合题1.填空题(1)连续函数满足,则的非积分表达式为 (2)函数的图形上的点的切线为,且满足微分方程则此函数为(3)微分方程满足的特解为(4)微分方程的通解为2.选择题(1) 设是满足微分方程的解,并且,则( C ).(A)
10、在的某个领域内单调增加 (B)在的某个领域内单调减少(C) 在取得极小值 (D)在取得极大值(2)微分方程使且在原点处有拐点,且在该点以轴为切线的积分曲线为( A )(A) (B)(C) (D)3.求函数,使其满足解 对原方程两端关于求导得 由一阶线性微分方程的通解公式为,又 故所求函数为 .4. 求微分方程y¢¢+y=xcos2x的一个特解. 解 所给方程是二阶常系数非齐次线性微分方程, 且f(x)属于elxPl(x)coswx+Pn(x)sinwx型(其中l=0, w=2, Pl(x)=x, Pn(x)=0). 与所给方程对应的齐次方程为y¢¢+y=0,它的特征方程为r2+1=0. 由于这里l+iw=2i 不是特征方程的根, 所以应设特解为y*=(ax+b)cos2x+(cx+d )sin2x.把它代入所给方程, 得(-3ax-3b+4c)cos2x-(3cx+3d+4a)sin2x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 太原旅游职业学院《基础写作一文学文体写作》2023-2024学年第二学期期末试卷
- 新疆铁道职业技术学院《辐射防护课程设计》2023-2024学年第二学期期末试卷
- 海南比勒费尔德应用科学大学《教育科学研究方法与论文写作》2023-2024学年第二学期期末试卷
- 安徽财经大学《计算机组成原理理论》2023-2024学年第二学期期末试卷
- 大庆职业学院《工程伦理学》2023-2024学年第二学期期末试卷
- 广西科技大学《组织社会学》2023-2024学年第二学期期末试卷
- 黄河交通学院《电工电子学B》2023-2024学年第二学期期末试卷
- 辽宁现代服务职业技术学院《娱乐空间设计与创新实训》2023-2024学年第二学期期末试卷
- 2024年家具清洗用品:洗衣皂项目投资申请报告代可行性研究报告
- 2024年多翼式鼓风机项目投资申请报告代可行性研究报告
- 老年患者营养支持途径及配方选择课件
- 2022年最新小升初英语试卷(含答案)
- 二环庚二烯(2,5-降冰片二烯)的理化性质及危险特性表
- “转观念、勇担当、强管理、创一流”对标工作整改方案
- 模具试模通知单
- 全科医师培训的全科门诊主要内容教学
- 苏州纳米所综合考试要点
- 离子交换设备设计计算(有公式)
- .运维服务目录
- 初二物理测量小灯泡电功率实验报告
- 毽球盘踢教学设计
评论
0/150
提交评论