




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1、有限元分析基础、有限元分析基础2、ANSYS应用应用2内容结构内容结构第一章第一章 概述概述第六章第六章 空间问题的有限单元法空间问题的有限单元法第七章第七章 轴对称旋转单元轴对称旋转单元第五章第五章 等参元等参元第四章第四章 平面结构问题的有限单元法平面结构问题的有限单元法第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法第二章第二章 结构几何构造分析结构几何构造分析31.1 1.1 有限单元法的概念有限单元法的概念1.2 1.2 有限单元法基本步骤有限单元法基本步骤1.3 1.3 工程实例工程实例第一章第一章 概述概述41.1 1.1 有限单元法的概念有限单元法的概
2、念基本思想基本思想: :借助于数学和力学知识,利用计算机技术而解决工程技术问题。Finite Element MethodFEMFinite Element Analysis 第一章第一章 概述概述5第一章第一章 概述概述三大类型三大类型(按其推导方法分): :(1) (1) 直接刚度法直接刚度法( (简称直接法简称直接法):): 根据单元的物理意义,建立有关场变量表示的单元性质方程。 (2) (2) 变分法变分法 直接从求解泛函的极值问题入手,把泛函的极植问题规划成线性代数方程组,然后求其近似解的一种计算方法。 (3) (3) 加权余量法加权余量法 直接从控制方程中得到有限单元方程,是一种近
3、似解法。 61.2 1.2 有限单元法基本步骤有限单元法基本步骤(1) (1) 待求解域离散化待求解域离散化(2) (2) 选择插值函数选择插值函数(3) (3) 形成单元性质的矩阵方程形成单元性质的矩阵方程(4) (4) 形成整体系统的矩阵方程形成整体系统的矩阵方程(5) (5) 约束处理,求解系统方程约束处理,求解系统方程(6) (6) 其它参数计算其它参数计算第一章第一章 概述概述7图1-2 工程问题有限单元法分析流程 第一章第一章 概述概述81.3 1.3 工程实例工程实例 (a) 铲运机举升工况测试(b) 铲运机工作装置插入工况有限元分析图1-3 WJD-1.5型电动铲运机第一章第一
4、章 概述概述9 (a) KOMATSU液压挖掘机 (b) 某液压挖掘机动臂限元分析图1-4 液压挖掘机 第一章第一章 概述概述10 图1-5 驾驶室受侧向力应力云图 图1-6 接触问题结构件应力云图 第一章第一章 概述概述11 图1-7 液压管路速度场分布云图 图1-8 磨片热应力云图 图1-9 支架自由振动云图 第一章第一章 概述概述12第二章第二章 结构几何构造分析结构几何构造分析2.1 2.1 结构几何构造的必要性结构几何构造的必要性 2.2 2.2 结构计算基本知识结构计算基本知识2.3 2.3 结构几何构造分析的自由度与约束结构几何构造分析的自由度与约束132.1 2.1 结构几何构
5、造的必要性结构几何构造的必要性 结构是用来承受和传递载荷的。结构是用来承受和传递载荷的。如果不计材料的应变,在其受到任意载荷作用时其形状和位置没有发生刚体位移时,称之为几何不变几何不变结构或几何稳定结构结构或几何稳定结构,反之则称为几何可变结几何可变结构或几何不稳定结构构或几何不稳定结构。几何可变结构不能承受和传递载荷。对结构进行几何构造分析也是能够对工程结构作有限单元法分析的必要条件。 第二章第二章 结构几何构造分析结构几何构造分析14 (a) 结构本身可变 (b) 缺少必要的约束条件 (c) 约束汇交于一点 图2-1 几何可变结构 第二章第二章 结构几何构造分析结构几何构造分析152.2
6、2.2 结构计算基本知识结构计算基本知识2.2.1 2.2.1 结构计算简图结构计算简图 实际结构总是很复杂的,完全按照结构的实际情况进行力学分析是不可能的,也是不必要的,因此在对实际结构进行力学计算之前,必须将其作合理的简化,使之成为既反映实际结构的受力状态与特点,又便于计算的几何图形。这种被抽象化了的简单的理想图形称之为结构的计算简图结构的计算简图,有时也称为结构的力学模型结构的力学模型。 结构计算所常用的结点和支座的简化形式结构计算所常用的结点和支座的简化形式: : (1)结点: 铰结点; 刚结点; 混合结点。(2)支座: 活动铰支座; 固定铰支座 ; 固定支座 ; 定向支座 第二章第二
7、章 结构几何构造分析结构几何构造分析162.2.2 2.2.2 结构的分类与基本特征结构的分类与基本特征 (1)按结构在空间的位置分 结构可分为平面结构和空间结构两大类(2) 按结构元件的几何特征分 杆系结构: 梁、拱、桁架、刚架、桁构结构等 。 板壳结构 实体结构实体结构的长、宽、高三个尺寸都很 大,具有同一量级。 混合结构 第二章第二章 结构几何构造分析结构几何构造分析17 2.3 2.3 结构几何构造分析的自由度与约结构几何构造分析的自由度与约束束 (1) 自由度自由度指结构在所在空间运动时,可以独立改变的几何参数的数目,也就是确定该结构位置时所需的独立参数的数目。(2) 约束约束 指减
8、少结构自由度的装置,即限制结构结构运动的装置。 a. 支座链杆的约束 b. 铰的约束: 单铰; 复铰; 完全铰与不完全铰。第二章第二章 结构几何构造分析结构几何构造分析18 3.1 3.1 结构离散与向量表示结构离散与向量表示 第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法3.2 3.2 位移函数及单元的刚度矩阵位移函数及单元的刚度矩阵 3.3 3.3 坐标变换及单元刚度矩阵坐标变换及单元刚度矩阵 3.4 3.4 整体刚度矩阵整体刚度矩阵 3.5 3.5 约束处理及求解约束处理及求解 3.6 3.6 计算示例计算示例 3.7 ANSYS3.7 ANSYS桁架结构计算示例
9、桁架结构计算示例3.8 ANSYS3.8 ANSYS刚架结构计算示例刚架结构计算示例 193.1 3.1 结构离散与向量表示结构离散与向量表示 工程上许多由金属构件所组成的结构,如塔式桁构支承架、起重机起重臂架、钢结构桥梁、钢结构建筑等可以归结为杆系结构。杆系结构按各杆轴线及外力作用线在空间的位置分为平面杆系和空间杆系结构。 杆系结构可以由杆单元、梁单元组成。 (a) Liebherr塔式起重机 (b) Liebherr履带式起重机(c) 钢结构桥梁 (d) 埃菲尔铁塔 图3-1 杆系结构第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法203.1.1 3.1.1 结构离散
10、化结构离散化 由于杆系结构本身是由真实杆件联接而成,故离散化比较简单,一般将杆件或者杆件的一段( 一根杆又分为几个单元 )作为一个单元,杆件与杆件相连接的交点称为结点。杆系结构的离散化的要点可参考如下: a. 杆件的转折点、汇交点、自由端、集中载荷作用点、支承点以及沿杆长截面突变处等均可设置成结点结点。这些结点都是根据结构本身特点来确定的。 b. 结构中两个结点间的每一个等截面直杆等截面直杆可以设置为一个单元。变换为作用在结点上的等效结点载荷。 第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法21 c. 变截面杆件变截面杆件可分段处理成多个单元,取各段中点处的截面近似作为
11、该单元的截面,各单元仍按等截面杆进行计算。 d. 对曲杆曲杆组成的结构,可用多段折线代替,每端折线为一个单元。如若提高计算精度,也可以在杆件中间增加结点。 e. 在有限元法计算中,载荷作用到结点上。当结构有非结点载荷作用时,应该按照静力等效的原则静力等效的原则将其等效结点荷载。第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法(a) 结点载荷处理方式 (b) 等效结点载荷处理方式图3-2杆系结构离散化示意图 223.1.2 3.1.2 坐标系坐标系 图3-3 坐标系示意图 为了建立结构的平衡条件,对结构进行整体分析,尚需要建立一个对每个单元都适用的统一坐标系,即结构坐标系或
12、称之为整体坐标系、总体坐标系整体坐标系、总体坐标系。 第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法233.1.3 3.1.3 向量表示向量表示 在有限单元法中力学向量力学向量的规定为:当线位移及相应力与坐标轴方向一致时为正,反之为负;转角位移和力矩,按右手法则定出的矢量方向若与坐标轴正向相一致时为正。对于任意方向的力学向量,应分解为沿坐标轴方向的分量。 (a)刚架结构示意图 (b) 结点位移和结点力分向量 图3-4 平面刚架分析示意图 第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法24 Tiiiivu Tjjjjvu结点位移列向量为 单元e结点
13、位移列向量为 Tjjjiiijieuu 结点力向量为 TeiiieiMVUF TejjjejMVUF 单元e结点力列向量为 TejjjiiiejeieMVUMVUFFF第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法253.2 3.2 位移函数及单元的刚度矩阵位移函数及单元的刚度矩阵 3.2.1 3.2.1 轴向拉压杆单元的位移的函数轴向拉压杆单元的位移的函数 有限单元法分析中,虽然对不同结构可能会采取不同的单元类型,采用的单元的位移模式不同,但是构建的位移函数的数学模型的性能、能否真实反映真实结构的位移分布规律等,直接影响计算结果的真实性、计算精度及解的收敛性。 为了保
14、证解的收敛性收敛性,选用的位移函数应当满足下列要求: a. 单元位移函数的项数,至少应等于单元的自由度数。它的阶数至少包含常数项和一次项。至于高次项要选取多少项,则应视单元的类型而定。第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法26 由单元结点位移,确定待定系数项 当 时, 当 时, 所以 用结点位移表示 其中 、 分别表示当 , 时; , 时的单元内的轴向位移状态,故称为轴向位移形函数轴向位移形函数。0 xlx iuu juu iu1luuij2jjuiiuuNNxu)(lxNiu1lxNjuiuNjuN1iu0ju0iu1ju第三章第三章 杆系结构静力分析的有限单
15、元法杆系结构静力分析的有限单元法 b. 单元的刚体位移状态和应变状态应当全部包含在位移函数中。 c. 单元的位移函数应保证在单元内连续,以及相邻单元之间的位移协调性。 27 3.2.2 3.2.2 梁单元平面弯曲的位移函数梁单元平面弯曲的位移函数 梁单元平面弯曲仅考虑结点的四个位移分量 , , , ,由材料力学知,各截面的转角: 故梁单元平面弯曲的位移表达式可分为仅包含四个待定系数 , , , 的多项式 单元结点位移条件 当 时 , 当 时 ,iijjxv1234342321)(xxxxv0 xivv ixvlx jvv jxvjijijijiiilvvllvvlv234232112213第三
16、章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法2832233223223322112312231xlxlNxlxlNxlxlxNxlxlNjjviivjjjjviiiivNvNNvNxv)( ejjiijuiuNNNNNNvu000000 eNf称为形函数矩阵形函数矩阵。 N第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法293.2.3 3.2.3 单元的应力应变单元的应力应变 在弹性范围内,并且不考虑剪力的影响时,平面刚架单元内任一点的轴向线应变由两部分组成,即轴向应变与弯曲应变之和,其轴向应变与平面桁架轴向应变相同。 轴向应变为 弯曲应变为 y为梁
17、单元任意截面上任意点至中性轴(x轴)的距离。 得出平面刚架单元应变 xulx22xvybx图3-5 弯曲应变计算示意图 22xvyxubxlxx exB则 xllyxllylxllyxllylB232232621261641261平面刚架梁单元的应变转换矩阵。 B exxBEE第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法303.2.4 3.2.4 平面刚架梁单元的刚度矩阵平面刚架梁单元的刚度矩阵 梁单元的i,j结点发生虚位移为 T*jjjiiieuu 单元内相应的虚应变应为 exB*由虚功原理有 dxdydzFxvxeeT*T* evedxdydzBEBTT* 由于结
18、点虚位移 的任意性,故上式可写成 e eeevekdxdydzBEBFT 上式称为局部坐标下的平面刚架单元的刚度方程,简称为单刚单刚。 第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法31 dxdydzBEBkveT 横截面积A 横截面对形心轴z的静矩S 横截面对主惯性轴z的惯性矩I 得到四个3 3子块所组成的局部坐标系下的平面刚架梁单元的单元刚度矩阵单元刚度矩阵。 AdydzA0AydydzSAdydzyI2 lEIlEIlEIlEIlEIlEIlEIlEIlEAlEAlEIlEIlEIlEIlEIlEIlEIlEIlEAlEAkkkkkejjejieijeiie460
19、260612061200000260460612061200000222323222323第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法32平面桁架的单元刚度矩阵为 lEAlEAlEAlEAkkkkkejjejieijeiie 空间桁架单元每个结点有3个位移分量,其单元结点位移列向量 Tjjjiiijiewuwu 空间桁架局部坐标下的单元刚度矩阵是66的 00000000000000000000000000000000lEAlEAlEAlEAkkkkkejjejieijeiie第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法33 空间刚架单元每个结
20、点有6个位移分量,其单元结点位移列向量 Tjzjyjxjjjiziyixiiijiewvuwvu 空间刚架局部坐标下的单元刚度矩阵是1212的。 (a) 杆单元i端产生单位位移 (b) 杆单元j端产生单位位移图3-6 平面桁架单元刚度系数的物理意义 (a) 梁单元i端产生单位位移 (b) 梁单元j端产生单位位移 第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法34(c) 梁单元i端产生单位角位移 (d) 梁单元j端产生单位角位移图3-7 平面刚架单元刚度系数的物理意义 3.2.5 3.2.5 单元的刚度矩阵的性质单元的刚度矩阵的性质 a. 单元刚度矩阵仅与单元的几何特征和
21、材料性质有关。仅与单元的横截面积A、惯性矩I、单元长度l、单元的弹性模量E有关。 b. 单元刚度矩阵是一个对称阵。在单元刚度矩阵对角线两侧对称位置上的两个元素数值相等,即,根据是反力互等定理。 c. 单元刚度矩阵是一个奇异阵。 d. 单元刚度矩阵可以分块矩阵的形式表示。具有确定的物理意义。第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法353.3 3.3 坐标变换及单元刚度矩阵坐标变换及单元刚度矩阵 3.3.1 3.3.1 坐标变换坐标变换 在整体坐标系中单元结点力向量和结点位移列向量可分别表示成 Tjjjiiiejeievuvu TjjjiiijieMYXMYXFFF
22、(a) 向量转换分析 (b) 向量转换图3-8 向量转换示意图 sincosiiivuucossiniiivuvii第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法36iiiiiivuvu1000cossin0sincos对于梁单元如图3-8(b)所示,则有 jjjiiijjjiiivuvuvuvu1000000cossin0000sincos0000001000000cossin0000sincos可简写为 eeT第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法37 同理 eeFTF式中 平面刚架梁单元的从局部坐标系向整体坐标系的转换矩阵。 T 1
23、000000cossin0000sincos0000001000000cossin0000sincosT3.3.2 3.3.2 整体坐标系下的单元刚度矩阵整体坐标系下的单元刚度矩阵 eeeeeeekTkTTkTFT1 式中 整体坐标下的单元刚度矩阵。 ek TTkTkee 和 一样,为对称阵、奇异阵。 ek ek第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法383.4 3.4 整体刚度矩阵整体刚度矩阵 3.4.1 3.4.1 整体刚度矩阵的建立整体刚度矩阵的建立 整体刚度矩阵也称之为结构刚度矩阵或总体刚度 矩阵,简称总刚总刚。 整体刚度矩阵的求解是建立在结构平衡条件结构
24、平衡条件的基础之上, 因此研究对象以整体坐标系为 依据。 图3-9 载荷向量示意图 如右图所示刚架结构,其结点载荷列向量分别为 T111. 1MPPPyx T2212. 2MPPPyx T3331. 3MPPPyx T444. 4MPPPyx第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法39结构载荷列向量 T4321PPPPP T444333222111MPPMPPMpPMPPPyxyxyxyx结点位移列向量 T4321 T444333222111vuvuvuvu对于结点对于结点1 1对于结点对于结点2 2对于结点对于结点3 3对于结点对于结点4 4111111111M
25、PPMYXyx 111PF222222222121212MPPMYXMYXyx 22212PFF333333333232323MPPMYXMYXyx 33323PFF444343434MPPMYXyx 434PF建立结点平衡条件方程式如右表。第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法40用分块矩阵的形式,建立杆端内力与结点位移的关系式。用分块矩阵的形式,建立杆端内力与结点位移的关系式。对于单元对于单元1 1有有 简写为简写为 其中单元其中单元1 1的刚度的刚度矩阵矩阵 关系式展开为关系式展开为 211221211121111211kkkkFF 111kF 12212
26、11121111kkkkk21221121122112111111kkFkkF第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法41对于单元对于单元2 2有有 简写为简写为 其中单元其中单元2 2的刚度矩阵的刚度矩阵 关系式展开为关系式展开为 322332322232222322kkkkFF 222kF 2332322232222kkkkk32332232232223222222kkFkkF第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法42对于单元对于单元3 3有有 简写为简写为 其中单元其中单元3 3的刚度矩的刚度矩阵阵 关系式展开为关系式展开为
27、433443433343333433kkkkFF 333kF 3443433343333kkkkk43443343344334333333kkFkkF第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法43 单元刚度矩阵由22的子矩阵组成, 每个子矩阵是33的方阵。 的上角标表示单元编号,下角标表示单元j端单位位移所引起的i端相应力。 将杆端内力与结点位移关系式代入结点的平衡条件方程式中,经整理得: eijk43214321344343334333233232223222122121112111000000PPPPkkkkkkkkkkkk简写为 PK称之为结构原始平衡方程结构
28、原始平衡方程。其中 344343334333233232223222122121112111000000kkkkkkkkkkkkK 为整体刚度矩阵。 K第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法443.4.2 3.4.2 整体刚度矩阵的集成整体刚度矩阵的集成 整体刚度矩阵是由在整体坐标系下,矩阵按照结点编号的顺序组成的行和列的原则,将全部单元刚度矩阵扩展成nn方阵后对号入座叠加得到。 对于单元1 0000000000001221211121111kkkkK对于单元2 0000000000002332322232222kkkkK对于单元3 34434333433330
29、000000000000kkkkK 单元刚度矩阵集成得出整体刚度矩阵 34434333433323323222322212212111211132100000043214321kkkkkkkkkkkkKKKK结点编号第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法453.4.3 3.4.3 整体刚度矩阵的性质整体刚度矩阵的性质 整体刚度矩阵 中位于主对角线上的子块 ,称为主子块主子块,其余 为副子块副子块。 a. 中主子块 由结点i的各相关单元的主子块扩展之后叠加求得,即 b.当结点i、 j为单元e的相关结点时, 中副子块为该单元e相应的副子块,即 。 c.当结点i、j为
30、非相关结点时, 中副子块 为零子块,即 。 d. 仅与各单元的几何特性、材料特性,即A、I、l、E等因素有关。 e. 为对称方阵, f. 为奇异矩阵,其逆矩阵不存在,因为建立整体刚度矩阵时没有考虑结构的边界约束条件。 KiiKijK KeiiiikK KijKeijijkK KijK 0ijK K KjiijKK K第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法46 g.为稀疏矩阵稀疏矩阵,整体刚度矩阵中的非零元素分布区域的宽度与结点编号有关,非零元素分布在以对角线为中心的带状区域内,称为带状分布规律,见图3-10(a)。在包括对角线元素在内的区域中,每行所具有的元素个
31、数叫做把半带宽,以d表示。 最大半带宽等于相邻结点号的最大差值加 1 与结点自由度数的乘积,结点号差越大半带宽也就越大。计算机以半带宽方式存储,见图3-10(b)。半带宽越窄,计算机的存储量就越少,而且可以大幅度减少求解方程所需的运算次数。其效果对大型结构显得尤为突出。 图3-10 整体刚度矩阵存储方法 h.整体刚度矩阵稀疏阵。 故整体刚度矩阵不能求逆,必须作约束处理方能正确地将结点位移求出,进而求出结构的应力场。 (a) 带状分布规律 (b) 带状存储 第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法473.5 3.5 约束处理及求解约束处理及求解 3.5.1 3.5.
32、1 约束处理的必要性约束处理的必要性 建立结构原始平衡方程式 时,并未考虑支承条件(约束),也就是说,将原始结构处理成一个自由悬空的、存在刚体位移的几何可变结构。整体刚度矩阵是奇异矩阵,因此,无法求解。可以参照第 2 章的原则,结合实际工程结构引入支承条件,即对结构原始平衡方程式 做约束处理。 约束处理后的方程称为基本平衡方程基本平衡方程。 统一记为 PK PK PK3.5.2 3.5.2 约束处理方法约束处理方法 约束处理常用方法有填填0 0置置1 1法法和乘大数法乘大数法。采用这两种方法不会破坏整体刚度矩阵的对称性、稀疏性及带状分布等特性。 第三章第三章 杆系结构静力分析的有限单元法杆系结
33、构静力分析的有限单元法48 下面以图3-11所示刚架结构为例,解释如何进行约束处理。对于下图所示刚架结构 设结点位移列向量为设结点载荷列向量为 T9321T321uuuu T9321T321ppppPPPP(a)固定支座 (b) 支座强迫位移已知 图3-11 结构约束第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法49其原始平衡方程式为 32132123323222322212212111211100PPPkkkkkkkk 按照每个结点的位移分量将上式展开为9876543219876543219998979695949392918988878685848382817978
34、77767574737271696867666564636261595857565554535251494847464544434241393837363534333231282726262524232221191817161514131211pppppppppuuuuuuuuukkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法50 对于如图3-11(a)所示,结构约束(支座)位移全部为零,此时做约束处理时,采用填
35、0置1法比较适宜。 对于如图3-11(b)所示,某约束(支座)位移为给定的强迫值,此时做约束处理时,采用乘大数法比较适宜。 (1) 填0置1法 如右图所示结点1、3处为固定支座,可知 将整体刚度矩阵中与之相对应的主对角元素全部置换成1, 相应行和列上的其它元素均改为0。 同时,所在同一行上的载荷分量替换成0,则有0987321uuuuuu第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法51000000010000000010000000001000000000000000000000000000000100000000010000000001654987654321926
36、66564565554464544pppuuuuuuuuukkkkkkkkkk654654666564565554464544pppuuukkkkkkkkk则第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法 也可简便地采用划行划列的办法。在整体刚度矩阵中将与约束位移为 0 的行和列划掉,包括相关的所在行的位移和载荷向量。52 处理后得基本平衡方程 (2) 乘大数法 右图所示刚架,结点1为固定支座,结点3处在方向的约束为已知强迫位移。即 将整体刚度矩阵中与之相对应的主对角元素全部乘以一个大数N,一般取 。同时,将相应同一行上的载荷分量替换成 N 乘以其主对角刚度系数和给定的
37、强迫位移(包括零位移)。 22222122Pkk097321uuuuu088uu 15101010N第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法5300000888654987654321999897969594939291898887868584838281797877767574737271696867666564636261595857565554535251494847464544434241393837363534333231282726262524232221191817161514131211kNpppuuuuuuuuukNkkkkkkkkkkNkkkk
38、kkkkkkNkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkNkkkkkkkkkkNkkkkkkkkkkN0921111jjukukN得到由于N 足够大,可以近似认为 0921jjuk,则得出 01u同时得到09732uuuu088uu 求出位移 之后,即可以求出结构的应力场 。 第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法54第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法 用有限单元法计算空间刚架结构,在原理上及推导过程与计算平面刚架结构相同。在此不再重复。但应注意到,由于空间的每一结点一般具有六个自由度,故
39、计算较之复杂些。3.6 3.6 计算示例计算示例 设两杆的杆长和截面尺寸相同, 27kN/m101 . 2 E杆件长 m。 10l图3-12 刚架受力简图55(1)结构离散化后 将结构划分为4个结点、3个单元2m5 . 0A43m2411215 . 0I截面积 ,惯性矩 (2) 求结点载荷 首先须求局部坐标系中固定端内力 eF0 (a) 单元1作为两端固定梁反力示意图 (b) 单元2作为两端固定梁反力示意图图3-13内力示意图 第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法56单元1 mKN8012106 . 912kN482106 . 922212101102101g
40、lMMglVVo单元2 mKN20081016081KlMMPVV在局部坐标系下单元载荷列向量在局部坐标系下单元载荷列向量 单元1 804808048010F单元2 20080020080020F单元3 00000030F第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法57 为了求出在整体坐标下的载荷列向量,先求单元得坐标转换矩阵 T单元1、2 00 I1000000100000010000001000000100000011000000cossin0000sincos0000001000000cossin0000sincos1T单
41、元3 090 1000000010000100000001000000010000101000000cossin0000sincos0000001000000cossin0000sincos3T第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法58求各求各单元单元在整体坐标下的在整体坐标下的等效结点载荷等效结点载荷 eP0 1020110101108048080480PPFFTPT 203022020220200800200800PPFFTPT第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法59 30204303T3000000000000010000
42、0001000010000000100000001000010PPFTPT求刚架的等效结点载荷 0P 3020100PPPP 00020080012012808048000000000000000020080020080000000000080480804800P第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法60因为无结点载荷作用,总结点载荷即为等效结点载荷等效结点载荷。 T0000200800120128080480 PP(3) 求单元刚度矩阵由于单元1、2、3的尺寸相同,材料弹性模量相同,故 ek 321kkk梁单元的局部坐标下的刚度矩阵表达式梁单元的局部坐标下的刚
43、度矩阵表达式 lEIlEIlEIlEIlEIlEIlEIlEIlEAlEAlEIlEIlEIlEIlEIlEIlEIlEIlEAlEAke460260612061200000260460612061200000222323222323第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法61 2321103500525017505250525105052510500010500001050017505250350052505251050525105000105000010500kkk则(4)求整体坐标系中的 ek单元1 111111T122211211kkkkkIkIk单元2
44、222222233322322kkkkkkk单元3 33T33TkTk第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法62 33343323222444103500052517500525010500001050005250105525010517500525350005250105000010500052501055250105kkkkk(5)求结构整体刚度矩阵 K利用刚度集成法利用刚度集成法 344342223242321111000000233223222222211211kkkkkkkkkkkkK(6)建立原始平衡方程式4321432134434222324232
45、1111000000233223222222211211PPPPkkkkkkkkkkkk第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法63(7)引入约束条件解方程组 由于1、3、4为固定端, 修改整体刚度矩阵中的13,612行与列, 以及载荷列向量中的相应的行,既约束处理。 0444333111vuvuvu建立基本平衡方程建立基本平衡方程 22222222Pkkk即622210428.1145145.1198465. 2vu得到(8)求各杆的杆端力 eF 单元3结点位移列向量 3336666010000001000000000100000100000102.8465 1
46、0119.5145000100119.5145 102.8465000001114.428 10114.428T第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法64单元1杆端内力计算 10111FkF7753.1137526.529888. 22496.662474.439888. 2单元2杆端内力计算 20222FkF2994.2262624.879888. 26757.1537376.729888. 2单元3杆端力计算 30333FkF9004.399776. 54902.1258755.199776. 54902.125第三章第三章 杆系结构静力分析的有限单元法杆系
47、结构静力分析的有限单元法65(9)作内力图 (a) 刚架轴力图(b) 刚架剪力图(c) 刚架轴弯矩图 图3-14 刚架内力图 第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法66ANSYSANSYS的基本过程的基本过程 一个典型的ANSYS分析过程可分为以下3个步骤:前处理前处理求解求解后处理后处理ANSYSANSYS应用分析应用分析第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法67(1) (1) 前处理前处理前处理前处理指定工程名称和分析标题指定工程名称和分析标题定义单位定义单位定义单元类型定义单元类型定义单元常数定义单元常数创建横截面创建横截面
48、定义材料特性定义材料特性创建有限元模型创建有限元模型定义分析类型求解控制定义分析类型求解控制加载加载681.1 1.1 指定工程名称和分析标题指定工程名称和分析标题更改工程名更改工程名定义分析标题定义分析标题691.2 1.2 定义单位定义单位 使用/UNITS命令可以设置系统单位,没有相应的GUI。 USER:用户自定义单位,是缺省设置 SI:国际单位制,m, kg, s, BFT:以英尺为基础的单位制,ft, slug, s, F CGS:cm, g, s, MPA:mm, mg, s, BIN:以英寸为基础的单位制in, lbm, s, F701.3 1.3 定义单元类型定义单元类型BE
49、AMCIRCUitCOMBINationCONTACtFLUIDHF(High Frequency)HYPERelasticINFINiteLINKMASSMATRIXMESHPIPEPLANEPRETS(pretension)SHELLSOLIDSOURCeSURFaceTARGEtTRANSducerUSERVISCOelastic711.4 1.4 定义单元常数定义单元常数 单元实常数是由单元类型的特性决定的,如梁单元的横截面特性。并不是所有的单元类型都需要实常数,同类型的不同单元也可以有不同的实常数。指定单元的指定单元的实常数号实常数号721.5 1.5 创建横截面创建横截面创建梁的横
50、截面创建梁的横截面731.6 1.6 定义材料特性定义材料特性定义材料特性定义材料特性指定单元材料号指定单元材料号74751.7 1.7 定义分析类型求解控制定义分析类型求解控制定义分析类型定义分析类型求解控制求解控制基本设置基本设置瞬态设置瞬态设置求解选项求解选项非线非线性设性设置置求解终求解终止的高止的高级控制级控制76 包括:自由度约束、力、表面分布载荷、体积载荷、惯性载荷、耦合场载荷载荷步:仅指可求得解的载荷设置。子步:是指在一个载荷步中每次增加的步长,主要是为了在瞬态分析和非线性分析中提高分析精度和收敛性。子步也称作时间步,代表一段时间。1.8 1.8 加载加载77(2) (2) 求
51、解求解求解当前载荷步求解当前载荷步求解某载荷步求解某载荷步78(3) (3) 通用后处理器通用后处理器画出分析的结果画出分析的结果用列表的形式列出分用列表的形式列出分析的结果析的结果查询某些结点或者单查询某些结点或者单元处的应力值以及其元处的应力值以及其它分析选项它分析选项79Deformed ShapeDeformed Shape表示表示画出变形后的形状。有画出变形后的形状。有如下选项:如下选项:3.1 3.1 画出分析的结果画出分析的结果803.2 3.2 画出节点的结果画出节点的结果81位移位移转角转角3.3 3.3 求解自由度结果求解自由度结果82正应力和剪应力正应力和剪应力主应力主应
52、力应力强度应力强度平均等效应力平均等效应力3.4 3.4 求解应力结果求解应力结果83正应变和剪应变正应变和剪应变主应变主应变应变强度应变强度平均等效应变平均等效应变3.5 3.5 求解总应变结果求解总应变结果84求解能量求解能量弹性应变弹性应变蠕变蠕变其它应变其它应变正应变和剪应变正应变和剪应变主应变主应变应变强度应变强度平均等效应变平均等效应变3.6 3.6 其它求解结果其它求解结果853.7 3.7 图形输出选项图形输出选项只画出变形后的图形只画出变形后的图形画出变形前后的图形画出变形前后的图形画出变形后的图形和画出变形后的图形和变形前的边界图变形前的边界图86(4) (4) 时间历程后
53、处理器时间历程后处理器适用于:瞬态分析的后处理。适用于:瞬态分析的后处理。873.7 ANSYS3.7 ANSYS桁架结构计算示例桁架结构计算示例101L=1m; 910L=1m; 材料为Q235;(1)选择单元类型选择单元类型 运行PreprocessorElement TypeAdd/Edit/Delete 在结点8上施加竖直向下的集中载荷F60000N, 约束为结点1处约束X,Y方向自由度,结点5处约束Y方向自由度。 图3-15 桁架结构示意图 图3-16 桁架各单元横截面图 第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法图3-17 单元类型对话框 88图3-18
54、 单元类型库对话框 (2)设置材料属性设置材料属性 运行PreprocessorMaterial PropsMaterial Models 图3-19选择材料属性对话框 图3-20设置材料1属性对话(3)设置单元截面形式设置单元截面形式 选择菜单PreprocessorSectionsBeamCommon Sections 图3-21梁截面设置对话框第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法89(4)定义实常数定义实常数运行Real ConstantsAdd/Edit/Delete 图3-22 设置LINK1单元的实常数 (5)建立模型建立模型 首先生成结点,运行主
55、菜单PreprocessorModeling Create Nodes In Active CS; 再生成单元,运行主菜单 PreprocessorModelingCreateElementsAuto NumberedThru Nodes穿越结点命令。 图3-23 创建结点对话框 第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法90图3-24通过结点建立单元 图3-25 桁架的有限元模型 (6)施加约束施加约束 运行主菜单SolutionDefine Loads ApplyStructuralDisplacementOn Nodes 图3-26 结点施加约束对话框 第三章
56、第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法91(7)施加载荷施加载荷 运行主菜单SolutionDefine LoadsApplyStructuralForce/MomentOn Nodes。 图3-27 结点施加载荷对话框 (8)求解求解 运行主菜单 SolutionSolveCurrent LS,分析当前的负载步骤命令,弹出如图3-28所示对话框,单击OK,开始运行分析。分析完毕后, 在信息窗口中提示计算完成, 单击Close将其关闭。 (9)后处理后处理 运行主菜单 General PostprocPlot ResultsContour PlotNodal Solu
57、命令,运行DOF SolutionDisplacement vector sum,出现桁架轴向应力云图。图3-29 云图显示对话框 第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法图3-28 求解对话框 92图3-30 位移云图 选择Stressvon Mises stress,则出现桁架位移云图 图3-31 云图显示对话框 图3-32 轴向应力云图 桁架的位移云图可知,最大位移发生在桁架的中部,最大位移为 m。 桁架的轴向应力云图可知,最大应力发生在2单元。最大应力45.9MPa。 3103 . 1第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法9
58、33.8 ANSYS3.8 ANSYS刚架结构计算示例刚架结构计算示例 图3-33 刚架示意图 约束形式为:A、D点施加全约束。在BC梁中点处受到竖直向下集中载荷的作用F1=20000N, AB柱的中点处受水平向右的集中载荷 F2=10000N;AB2m, BC2m,材料为钢材,弹性模量E=2.11011Pa,泊松比=0.3。 (1)选择分析范畴选择分析范畴图3-34选择分析范畴对话框 在主菜单中单击Preferences菜单,弹出Preferences for GUI Filtering窗口,选择Structural, 然后单击OK按钮。第三章第三章 杆系结构静力分析的有限单元法杆系结构静力
59、分析的有限单元法94(2)选择单元类型选择单元类型 运行PreprocessorElement TypeAdd/Edit/Delete,弹出Element Types对话框,选择BEAM188单元。图3-35 单元类型对话框图3-36 单元类型库对话框 (3)设置单元截面形式设置单元截面形式 运行PreprocessorSectionBeamCommon Sections,弹出 Beam Tool 对话框,W1选项栏中填写0.1,W2选项栏中填写0.2,t1t4中填写0.008。 设置完毕单击OK按钮。 图3-37 梁截面设置对话框 第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的
60、有限单元法95(4)设置材料属性设置材料属性 运行PreprocessorMaterial Props Material Models,弹出Define Material Model Behavior对话框。双击Isotropic选项,弹出Linear Isotropic Properties for Material Number1对话框,在EX选项栏中设置数值2.1e11,在PRXY选项栏中设置数值0.3。设置完毕单击OK按钮。 图3-38 选择材料属性对话框 图3-39 设置材料属性对话框 第三章第三章 杆系结构静力分析的有限单元法杆系结构静力分析的有限单元法96(5)建立模型建立模型
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 淀粉在化妆品的滑石粉替代应用考核试卷
- 稀有金属在量子计算领域的应用考核试卷
- 欧阳修的春秋笔法宋代士大夫如何改写唐史
- 2025年租房经营民宿的合同范本
- 2025年度品牌推广服务合同
- 2025授权代建合同示范文本
- 2025房产交易居间合同范本
- 《2025年终止服务合同范本》
- 隧道工程-桥梁及结构工程施工图设计说明
- 苏教版九年级下册数学(全册知识点考点梳理、重点题型分类巩固练习)(提高版)(家教、补习、复习用)
- 国开2023春《语言学概论》形考任务1-3+大作业参考答案
- 宿舍楼施工方案方案
- 甲醇-水精馏塔
- 中国话剧史专题知识
- GB/T 15544.1-2023三相交流系统短路电流计算第1部分:电流计算
- GB/T 90.3-2010紧固件质量保证体系
- GB/T 18799-2020家用和类似用途电熨斗性能测试方法
- 科技公司涉密计算机软件安装审批表
- GA/T 1369-2016人员密集场所消防安全评估导则
- GA 1517-2018金银珠宝营业场所安全防范要求
- FZ/T 64014-2009膜结构用涂层织物
评论
0/150
提交评论