《函数的最大(小)值与导数》教案_第1页
《函数的最大(小)值与导数》教案_第2页
《函数的最大(小)值与导数》教案_第3页
《函数的最大(小)值与导数》教案_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上函数的最大(小)值与导数教案 【教学目标】1使学生理解函数的最大值和最小值的概念,掌握可导函数在闭区间上所有点(包括端点)处的函数中的最大(或最小)值必有的充分条件;2使学生掌握用导数求函数的极值及最值的方法和步骤【教学重点】利用导数求函数的最大值和最小值的方法【教学难点】函数的最大值、最小值与函数的极大值和极小值的区别与联系【教学过程】一、复习回顾: 1极值的概念:极大值: 一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点极小值:一般地,设函

2、数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)f(x0)就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点2 判断函数的极值的方法:解方程.当时:(1)如果在附近的左侧,右侧,那么是极大值;(2)如果在附近的左侧,右侧,那么是极小值.3 求可导函数f(x)的极值的步骤:(1)确定函数的定义区间,求导数f(x);(2)求方程f(x)=0的根;(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格检查f(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值

3、;如果左右不改变符号即都为正或都为负,那么f(x)在这个根处无极值二、新知探究:1函数的最大值和最小值观察右图中一个定义在闭区间上的函数的图象,你能找出它的极大值点,极小值点吗?图中极大值点是:,极小值点是:函数在上的最大值是,最小值是一般地,在闭区间上连续的函数在上必有最大值与最小值说明:在开区间内连续的函数不一定有最大值与最小值如函数在内连续,但没有最大值与最小值;函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的函数在闭区间上连续,是在闭区间上有最大值与最小值的充分条件而非必要条件(4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一

4、个,也可能没有一个利用导数求函数的最值步骤:由上面函数的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了设函数在上连续,在内可导,则求在上的最大值与最小值的步骤如下:求在内的极值;将的各极值与、比较得出函数在上的最值三、讲解范例:例1、求函数在0, 3上的最大值,最小值.x0(0,2)2(2,3)3f(x)0f(x)12-43变式练习:求函数在区间-1,1上的最值.(最大值:2,最小值:-12)例2、已知函数;(1)求f(x)的单调递减区间;(答案:)(2)若f(x)在区间-2,2上的最大值为20,求它在该区间上的最小值.(答案:-7)四、课堂小结

5、:函数在闭区间上的最值点必在下列各种点之中:导数等于零的点,导数不存在的点,区间端点;函数在闭区间上连续,是在闭区间上有最大值与最小值的充分条件而非必要条件;闭区间上的连续函数一定有最值;开区间内的可导函数不一定有最值,若有唯一的极值,则此极值必是函数的最值五、当堂检测:1下列说法正确的是( )A函数的极大值就是函数的最大值 B函数的极小值就是函数的最小值C函数的最值一定是极值 D在闭区间上的连续函数一定存在最值2函数y=f(x)在区间a,b上的最大值是M,最小值是m,若M=m,则f(x) ( )A等于0B大于0 C小于0D以上都有可能3函数y=,在-1,1上的最小值为( )A0B2 C1D4设y=|x|3,那么y在区间-3,-1上的最小值是( )A27B3 C1D15设f(x)=ax36ax2+b在区间-1,2上的最大值为3,最小值为29,且a>

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论