一种基于DSP和采样ADC的数字锁定放大器_第1页
一种基于DSP和采样ADC的数字锁定放大器_第2页
一种基于DSP和采样ADC的数字锁定放大器_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、一种基于DSP和采样ADC的数字锁定放大器    摘要探讨了用DSP(数字信号处理器)和采样ADC(模数转换器)实现数字锁定放大器的一种方法。在整数个周期内对被测信号进行采样得到信号序列,由数学运算得到参考序列,通过计算信号序列和参考序列的互相关函数就可实现数字相敏检测。文中还对数字相敏检测的频率特性进行了分析。最后,给出了实际设计的数字锁定放大器,它的工作频率范围是10 Hz30 kHz,实验结果表明,可以用它来测量低信噪比的信号。关键词:相关检测;数字信号;采样;模数转换器 锁定放大器(LIA)在微弱信号检测领域有着重要的应用,本质上它是一种实现互相

2、关检测的仪器,模拟LIA一般用开关式乘法器和低通滤波器来实现模拟相敏检波,数字LIA是通过ADC将模拟信号转化为数字信号再由DSP或微处理器来进行数字解调运算。数字LIA比模拟LIA有许多优点,如谐波抑制能力强、无直流漂移、实行数字处理有很好的灵活性等。陈佳圭对早期实现数字LIA的5种主要方法进行了介绍1,它们的一个共同特点是算法简单、易行,基本上只需做累加运算就可得出检测结果,但它们不能很好地抑制谐波。左营喜等提出的分段累加相关法2有一定的灵活性,可在抑制谐波和提高处理速度之间进行折衷。SR850是国外近几年推出的第一代数字LIA产品,其工作原理是通过ADC以256 kHz的固定采样率把被测

3、模拟信号转换为信号序列,由DSP合成正弦参考序列,在DSP中将参考序列和采样得到的信号序列相乘,再进行数字低通滤波得到解调输出。本文给出了一种利用DSP和采样ADC实现数字锁定放大器的方法,与SR850类似,通过采样ADC将被测模拟信号转换为信号序列,由DSP合成参考序列,但不同的是,这里要控制采样频率以实现整周期采样,这样不仅使得DSP可以精确地合成参考序列,而且能建立简洁、有效的数字互相关运算。文中对这种方法进行了分析,并给出了实际设计的数字LIA。1工作原理在互相关检测中有一个参考信号,设参考信号频率为fr,可以通过一定方法控制采样频率fs,使得fsN·fr,N3,N由DSP来

4、确定。设被测信号x(t)Asin(2frt),A0为信号幅度,为信号初相位,在q个参考信号周期对x(t)进行Mq·N不用对实际的参考信号进行采样,而由DSP根据N来合成正弦参考序列rs(k)和余弦参考序列rc(k) rs(k)和rc(k)分别相当于对正弦参考信号sin(2frt)和余弦参考信号cos(2frt)进行同步采样所得。按式(3,4)来计算x(k)和rs(k)的互相关Rxrs,x(k)和rc(k)的互相关Rxrc 式(3,4)分别表示同相输出和正交输出,对于由式 2频率特性分析输入信号与参考信号不同频时的输出特性。设被测信号x(t)Asin(2ft),ffr,A0为信号幅度,

5、仍在q个参考信号周期进行M次采样,得到信号序列x(k) 式(6,7)描述了测量非同频正弦信号时的同相输出和正交输出。图1给出了在N8,q3,05时,根据式(6,7)得到的随频率变化的输出特性曲线。由图可知,当输入信号频率在fr附近有较大输出时,这显示了数字互相关检测的频率选择性;但当输入信号频率在fs±fr附近也有较大输出时,这是由于信号频率大于折叠频率fs2而产生了混迭效应。 混迭效应会使数字LIA的频率选择性能变差,实际中应在对信号采样前使用反混迭低通滤波器,将大于折叠频率的成分滤除。下面只考虑信号频率不大于折叠频率的情形,即a在0,N/2内,取值分析式(6,7)可以得出下列结论

6、:    (1)如a=k/q,k为整数且kq,有RxrsRxrc0,由此可知对于非1次的谐波信号,输出完全无响应。    (2)在a1+1/q时,随a的增大,Rxrs和Rxrc呈振荡衰减趋势,在a1-1/q时,随a的减小,Rxrs和Rxrc呈振荡衰减趋势;在a1-1/q,1+1/q时,Rxrs,Rxrc取值较明显,即当f在fr-fr/q,fr+fr/q频带范围内时输出较大,此频带宽度为2fr/q=2/qTr=2/Tc,TcqTr是测量时间。3数字LIA的实现实际设计了一个使用TMS320C30 DSP和采样ADCAD976的数字LIA

7、,TMS320C30是速度快、功能强、使用方便的32位浮点运算DSP,AD976是最高采样速率为100 kHz的16位并行ADC。图2给出了数字LIA的原理框图,系统由信号处理电路、TMS320C30开发板和微机组成。此数字LIA使用起来相当方便、灵活,DSP执行的程序由微机来加载,DSP计算得到的结果传送给微机来显示和存储。下面对图2所示数字LIA的主要工作过程作简要说明。一个方波或其他形式的周期信号连接到系统的参考输入端,通过触发电路得到TTL电平的方波信号,再经过整形电路产生约100 ns的脉冲和DSP的INT2相连,使DSP可靠地产生一次中断,首先DSP要用内部定时器来测量响应两次中断

8、INT2的时间间隔,由此可得参考信号的周期Tr和频率fr。当fr在10 Hz30 kHz范围内时,由DSP计算90 kHz除以fr的商值并以所得结果的整数部分作为N值,通过并行输出口将锁相环(PLL)倍频电路中的分频器设置为N分频,显然N在39 000范围内取值,采样频率在67590 kHz范围内取值。AD976的转换结束信号经过整形电路产生约100ns脉冲,此脉冲和DSP的INT1相连,DSP在响应某一此中断INT2后允许响应中断INT1,这实际上是通过参考信号来确定起始采样。DSP响应中断INT1进行实时处理,读入采样所得数据并转换成浮点数,计算出对应这一采样点的数字正弦、余弦参考信号,然

9、后进行互相关的相乘、累加操作,在采样M次后将得到的累加值除以M得到最后的互相关运算结果。这里,在存储器中预先装入了0,2区间内1 024个等分数据点的正弦、余弦值,DSP通过计算正弦、余弦函数在某一数据点的三阶泰勒多项式,可以快速获得所需的数字正弦、余弦参考信号。此数字LIA的工作频率范围是10 Hz30kHz,工作频率下限只到10 Hz是因为在更低频率时实际系统中的PLL电路要获取稳定的同步倍频信号有困难;而系统的工作频率上限主要是由ADC的转换速度决定的。对设计的数字LIA进行了测试,将有效值为1 mV的1 kHz正弦信号和由噪声发生器输出的低通限带白噪声(实际带宽100 kHz)相加,得到低信噪比(RSN)的被测信号,通过一定的软件编程能将数字LIA的测量时间取得很大。图3给出对RSN40 dB信号分别取测量时间Tc为1,100 s时连续测量的结果,图4给出对RSN60 dB信号分别取测量时间Tc为100,1 000 s时连续测量的结果。图3,4显示,在RSN一定时取长的测量时间可得到较稳定的结果,通过增大测量时间系统可将RSN很低的信号检测出来。4结束语对信号进行整周期采样得到信号序列,由DSP合成正弦、余弦参考序列,计算参考序列和信号序列的互相关,就可得相敏检测输出。用此方法实现的数字 LIA有很强的谐波抑制能力,但要在采样ADC前使用反

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论