ls绝对值:重难知识点_第1页
ls绝对值:重难知识点_第2页
ls绝对值:重难知识点_第3页
ls绝对值:重难知识点_第4页
ls绝对值:重难知识点_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、萧然书院教学讲义教师姓名李老师学生姓名上课时间检查签名教学目标绝对值的概念及相关应用;重点、难点|a|,|ab|的几何意义;绝对值的相关应用;考点及考试要求|a|,|ab|的几何意义;绝对值的相关应用;知识要点解析1. 绝对值的实质:正实数与零的绝对值是其自身,负实数的绝对值是它的相反数,即也就是说,|x|表示数轴上坐标为x的点与原点的距离。总之,任何实数的绝对值是一个非负数,即|x|0,请牢牢记住这一点。【案例1】化简1-a+2a+1+a(a-2.解:a0,2a+10.1-a+2a+1+a=1-a+(-2a-1+(-a=-4a 二. 绝对值的几何意义:一个数的绝对值就是数轴上表示这个数的点到

2、原点的距离。 【案例2】有理数a、b、c在数轴上的位置如图所示,则式子|a|+|b|+|a+b|+|b-c|化简结果为( A2a+3b-c B3b-c Cb+c Dc-b(第二届“希望杯”数学邀请赛初一试题解:由图形可知a0,cb0,且|c|b|a|,则a+b0,b-c0所以原式-a+b+a+b-b+cb+c,故应选(C三. 绝对值的性质:1. 有理数的绝对值是一个非负数,即|x|0,绝对值最小的数是零。2. 任何有理数都有唯一的绝对值,并且任何一个有理数都不大于它的绝对值,即x|x|。3. 已知一个数的绝对值,那么它所对应的是两个互为相反数的数。4. 若两个数的绝对值相等,则这两个数不一定相

3、等(显然如|6|-6|,但6-6,只有这两个数同号,且这两个数的绝对值相等时,这两个数才相等。【案例3】已知a-3+-b+5+c-2=0,计算2a+b+c的值;解:a-3+-b+5+c-2=0,又a-30,-b+50,c-20.a-3=0,-b+5=0,c-2=0,即a=3,b=5,c=2,2a+b+c=13 【案例4】已知x=2003,y=2002,且x0,y0,求x+y的值。【案例5】已知x+y+3=0, 求x+y的值。四. 用绝对值的几何意义解题:|a|的几何意义是:数轴上表示a的点到原点的距离;|ab|的几何意义是:数轴上表示数a、b的两点的距离对于某些问题用绝对值的几何意义来解,直观

4、简捷,事半功倍求字母的取值范围【案例6】 若 |x+1|+|2x|3,则x的取值范围是_解:由绝对值的几何意义知,|x+1|+|x2|的最小值为3,此时x在12之间(包括两端点)取值(如图4所示),故x的取值范围是1x2【案例7】对于任意数x,若不等式|x2|+|x4|a恒成立,则a的取值范围是_解:由绝对值的几何意义知,|x2|+|x4|的最小值为6,而对于任意数x,|x2|+|x4|a恒成立,所以a的最值范围是a6求代数式的最值【案例8】已知a是有理数,| a2007|+| a2008|的最小值是_.解:由绝对值的几何意义知,| a2007|+| a2008|表示数轴上的一点到表示数200

5、7和2008两点的距离的和,要使和最小,则这点必在20072008之间(包括这两个端点)取值(如图1所示),故| a2007|+| a2008|的最小值为1. 【案例9】 |x2| x5| 的最大值是_,最小值是_解:把数轴上表示x的点记为P由绝对值的几何意义知,|x2| x5|表示数轴上的一点到表示数2和5两点的距离的差,当P点在2的左边时,其差恒为3;当P点在5的右边时,其差恒为3;当P点在25之间(包括这两个端点)时,其差在33之间(包括这两个端点)(如图2所示),因此,|x2| x5|的最大值和最小值分别为3和3解绝对值方程【案例10】方程|x1|+|x2|4的解为_ 解:把数轴上表示

6、x的点记为P,由绝对值的几何意义知,当2x1时,|x1|+|x2|恒有最小值3,所以要使|x1|+|x2|4成立,则点P必在2的左边或1的右边,且到表示数2或1的点的距离均为个单位(如图3所示),故方程|x1|+|x2|4的解为:解不等式【案例11】 不等式|x2|+|x3|5的解集是_解:由绝对值的几何意义知,|x2|+|x3|的最小值为5,此时x在23之间(包括两端点)取值,若|x2|+|x3|5成立,则x必在2的左边或3的右边取值(如图5所示),故原不等式的解集为x2或x3判断方程根的个数【案例12】方程|x+1|+|x+99|+|x2|1996共有( )个解A.4; B 3; C 2;

7、 D1解:当x在991之间(包括这两个端点)取值时,由绝对值的几何意义知,|x+1|+|x+99|98,|x2|98此时,|x+1|+|x+99|+|x2|1996,故|x+1|+|x+99|+|x2|1996时,x必在991之外取值,故方程有2个解,选(C)五. 含绝对值问题的有效处理方法1. 运用绝对值概念。即根据题设条件或隐含条件,确定绝对值里代数式的正负,再利用绝对值定义去掉绝对值的符号进行运算。【案例13】已知:|x-2|+x-20,求:(1x+2的最大值;(26-x的最小值。解:|x-2|+x-20,|x-2|-(x-2 根据绝对值的概念,一个数的绝对值等于它的相反数时,这个数为负

8、数或零,x-20,即x2,这表示x的最大值为2(1当x2时,x+2得最大值2+24;(2当x2时,6-x得最小值6-242. 用绝对值为零时的值分段讨论即对于含绝对值代数式的字母没有条件限制或限制不确切的,就需先求零点,再分区间定性质,最后去掉绝对值符号。【案例14】已知|x-2|+x与x-2+|x|互为相反数,求x的最大值解:由题意得(|x-2|+x+(x-2+|x|0,整理得|x-2|+|x|+2x-20令|x-2|0,得x2,令|x|0,得x0以0,2为分界点,分为三段讨论:(1x2时,原方程化为x-2+x+2x-20,解得x1,因不在x2的范围内,舍去。(20x2时,原方程化为2-x+

9、x+2x-20,解得x0(3x0时,原方程化为2-x-x+2x-20,从而得x0综合(1、(2、(3知x0,所以x的最大值为03. 整体参与运算过程即整体配凑,借用已知条件确定绝对值里代数式的正负,再用绝对值定义去掉绝对值符号进行运算。【案例15】若|a-2|2-a,求a的取值范围。解:根据已知条件等式的结构特征,我们把a-2看作一个整体,那么原式变形为|a-2|-(a-2,又由绝对值概念知a-20,故a的取值范围是a24. 运用绝对值的几何意义即通过观察图形确定绝对值里代数式的正负,再用绝对值定义去掉绝对值的符号进行运算【案例16】求满足关系式|x-3|-|x+1|4的x的取值范围解:原式可

10、化为|x-3|-|x-(-1|4它表示在数轴上点x到点3的距离与到点-1的距离的差为4由图可知,小于等于-1的范围内的x的所有值都满足这一要求。所以原式的解为x-1六. 有关绝对值知识的应用1. 如果根据已知条件或题目中的隐含条件可以确定绝对值符号内的数(或代数式为“负”值或“非负”值,则由绝对值的定义可直接写出其结果.【案例17】设x,y,a是实数,并且|x|1-a,,试求的值等于_解:显然|x|0,|y|0,由|x|0得1-a0,由|y|0得1-a0,1-a0,从而x0,y0,a1原式|0|+0+12+122. 如果根据已知或题目自身不能确定绝对值符号内的代数式为“负”或“非负”,就应分别

11、对各种情况进行讨论。讨论的方法有:(1直接利用绝对值的性质,去掉绝对值符号,把式子转化为不含绝对值的式子进行讨论。【案例18】已知|a|3,|b|2,求a+b的值。解:|a|3,|b|2, a3或-3,b2或-2因此a,b的取值应分四种情况:a3,b2或a3,b-2或a-3,b2或a-3,b-2,从而易求a+b的值分别为5,1,-1,-5解这类问题,要正确组合,全面思考,谨防漏解。(2采用零点分区间法,求出绝对值的零点,把数轴分成相应的几个区间进行讨论(所谓绝对值的零点就是使绝对值符号内的代数式等于零的字母所取值在数轴上所对应的点。【案例19】化简:|1-3x|+|1+2x|解:由和得两个零点

12、:和,这两个点把数轴分成三部分:(1)当时, 原式(2)当时, 原式;(3)当时,原式-(1-3x+(1+2x5x3. 利用绝对值的几何意义解含绝对值的方程,这样既直观,又简便。因为|x|的几何意义是表示数轴上点x到原点的距离,因此|x-a|的几何意义是表示点 x到点 a的距离由此可知,方程 |x-a|k的解是xa+k或 xa-k(k0 【案例20】|x-2|+|x-1|+|x-3|的最小值是( A1 B2 C3 D4解:设A(1,B(2,C(3,P(x,如图所示,求|x-1|+|x-2|+|x-3|的最小值,即是在数轴上求一点P,使AP+BP+PC为最小,显然,当P与B重合,即x2时,其和有

13、最小值2,故应选(B4. 利用“一个实数的绝对值是一个非负数”这一性质解题,可使问题化难为易。在运用这一性质时,常与非负数的性质:“有限个非负数的和为零时,则每一个非负数必为零”联用。【案例21】若|m+1|+|2n+1|0,那么_七、绝对值化简与求值的基本方法【案例22】 若a、b互为相反数,cd互为负倒数则|a+b+cd|_(96年泰州市初中数学竞赛解:由题设知a+b0,cd-1,则|a+b+cd|0-1|1 【案例23】若|x-y+2|与|x+y-1|互为相反数,则xy的负倒数是_(95年希望杯邀请赛初一培训题解:由题设知|x-y+2|0,|x+y-1|0,但二者互为相反数,故只能x-y

14、+20,x+y-10解得,其负倒数是【案例24】 已知a、b是互为相反数,c、d是互为负倒数,x的绝对值等于它的相反数的2倍,则x3+abcdx+a-bcd的值是_(94年希望杯邀请赛初一试题解:由题设知a+b0,cd-1又x的绝对值等于它的相反数的2倍,x0,原式03+0+a-b(-1a+b0【案例25】化简|x+1|+|x-2|;解:令x +10,x-20,得x-1与x2,故可分段定正负再去符号(1当x-1时,原式-(x+1-(x-2-2x+1;(2当-1x2时,原式(x+1-(x-23;(3当x2时,原式x+1+(x-22x-1说明:例14中没有给定字母任何条件,这种问题应先求零点,然后

15、分区间定正负再去绝对值符号,这种方法可归纳为:“求零点,分区间,定性质,去符号”。八、绝对值与非负数我们称不是负数的有理数为非负有理数,简称非负数。当我们说x是一个非负数时,用数学符号表示就是x0.注意:有的同学们往往用x0表示任意一个非负数,而忘掉等号!这是因为他们错将非负数理解为负数的相反数了!尽管只是丢掉一个零,在数轴上只差一个点,但就全体有理数而言,却是丢掉了三类有理数中的一类。也就是说,|x|表示数轴上坐标为x的点与原点的距离。我们看到,任何有理数的绝对值都是一个非负数,而任何一个非负数都可表示为某数的绝对值。即对任意有理数x 有|x|0,这一点至关重要。【案例26】若a为任意实数,

16、则下列式子中一定成立的是( A|a|0 B|a|a C. D. 解:对这个问题的分析首先要注意到绝对值都是非负数,而非负数包括零。如此就很容易淘汰掉A、B,而C需从a的取值范围来讨论,如,则C不对,至于D有非负数的性质:“一个非负数加上一个正数,得正数”,即可知其正确。【案例27】已知a0c,ab0,|b|c|a|,化简|a+c|+|b+c|-|a-b|解:分析这个题目的关键是确定a+c、b+c、a-b的符号,根据已知可在数轴上标出a、b、c的大致位置,如图所示:很容易确定a+c0,b+c0,a-b0,由绝对值的概念,原式(a+c-(b+c-(a-ba+c-b-c-a+b0用数轴上的点来表示有

17、理数,用这样的点与原点的距离来表示有理数的绝对值,这里运用了数形结合的思想。巩固练习1. 已知m0,则化简m+|m-|m|_2. 已知实数a、b在数轴上的对应位置如图所示,化简|a|-|b|+|a-b|-|b-a|_3. 已知|m|1,|n|2求m+n4. x为何值时,-4|1-x|-5有最大值,最大值是多少?5. 已知a-20b2,去掉下列三式的绝对值符号:6. 试去掉|x2-x-2|的绝对值符号7. 化简|3x+1|-|x|+|1-x|8. 化简|x+3|+|x-2|+|x-5|9. 五个有理数a、b、c、d、e满足|abcde|-abcde,试求的最大值。答案:1. 解 原式m+|m-(

18、-m|m+|2m|m-2m-m2. 解 由图可知a0,b0,故a-b0,b-a0原式a-(-b+(a-b-(b-aa+b+a-b+b-aa+b说明:本题是根据图形定正负去符号,这种方法可归纳为:“看图形,定性质,去符号”。3. 解 m1,n2,当m1,n2时,m+n3;当m1,n-2时,m+n-1;当m-1,n2时,m+n1;当 m-1, n-2时, m+n-34. 解 当x1时,|1-x|取最小值0,-4|1-x|-5有最大值-55. 解:(1)(2)(3)6. 解:因为x2-x-2是变量,可以是非负数也可以是负数,所以应当分两种情形去掉绝对值符号:由x2-x-20,得x2或x-1,由x2-x-20,得-1x2 当x2或x-1时,|x2-x-2|=x2-x-2,当-1x2时,|x2-x-2|=-(x2-x-2=-x2+x+27. 解:式中含有三个变量,即3x+1,x,1- x它们分别为非负数、负数时的x的取值范围是彼此不一样的,可以采用找零点、分区间的办法去绝对值符号:由即这三个点把数轴分成四个区间: 原式3x+1-(-x+1-x3x+2当0x1时,3x+10,x0,1-x0,故原式3x+1-x+1-xx+2当x1时,3x+10,x0,1-x0,故原式3x+1-x+-(1-x=3x8. 分析与略解:本题由于x的取值范围不定,所以我们必须分类讨论x的取值范围情况,分别由x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论