高负荷活性污泥膨胀控制-试验研究_第1页
高负荷活性污泥膨胀控制-试验研究_第2页
高负荷活性污泥膨胀控制-试验研究_第3页
高负荷活性污泥膨胀控制-试验研究_第4页
高负荷活性污泥膨胀控制-试验研究_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高负荷活性污泥膨胀控制-试验研究            摘要:提出一类高负荷的丝状菌污泥膨胀现象,并对高负荷引起的污泥膨胀控制进行试验研究。试验结果表明高负荷引起的污泥膨胀是由于溶解氧限制所造成。针对这一问题采用部分填料池、污泥再生池和强化曝气池等方法可以有效地控制高负荷引起的膨胀。在此基础上提出了广义的选择器的概念。同时根据试验结果提出了在设计时应考虑的避免污泥膨胀的原则和从设计上考虑留有今后运行中可供调整的措施,以控制污泥膨胀。 关键词:污泥膨胀 高负荷的丝状菌 活性污泥

2、  1污泥膨胀现象的研究在活性污泥膨胀早期的研究中,人们对于废水水质、运行条件和丝状菌过度生长之间的关系非常关注。对于水质的影响,不同的研究者的观点是一致的。在大量的实践中总结出如下的几种废水水质情况容易引起污泥膨胀: (1)碳水化合物含量高的废水; (2)陈腐或腐化的废水和含有大量H2S的废水; (3)含有大量可溶性有机物的废水; (4)含有有毒物质的废水; (5)N、P含量不平衡的废水; (6)高或低pH值废水; (7)一些微量元素(如Fe等)缺乏的废水; (8)完全混合曝气池内废水; (9)与城市污水相比较,工业废水更易发生膨胀1。 对于运行条件对膨胀的影响,人们的认识很不一致

3、。在实际生产的报道中负荷低会引起膨胀,负荷高也会引起膨胀;低溶解氧会引起膨胀,高溶解氧也会引起膨胀;完全混合曝气池会发生膨胀,推流式曝气池也会发生膨胀;低CN比(或CP比)引起膨胀,高CN比(或CP 比)也会引起膨胀等等1-3。由于很多因素会造成污泥膨胀,对膨胀的报道众说纷纭,使得人们对于污泥膨胀问题望而生畏。污泥膨胀问题是污水处理工艺中相对比较复杂的一个问题。造成这种现象的原因是多方面的,首先,引起污泥膨胀的丝状菌达30多种,所以实际活性污泥膨胀问题异常复杂。由于不同微生物生态要求不同,影响丝状菌的因素较多。另外由于在活性污泥工艺的设计上国外大都采用低负荷系统,所以研究和报道的大部分是低负荷

4、基质限制型膨胀。国内设计规范建议的负荷范围是属于中等负荷(0.3kgBOD5/(kgMLSS·d),在实际应用中人们总是希望系统经济,而采用高负荷,这就造成国内大部分污泥膨胀类型不同于国外。最后有时某些研究者研究的单一目的性防碍了对污泥膨胀现象的全面地观察。2高负荷污泥膨胀的试验现象 作者在水解-好氧工艺开发的小试和中试中,曾观察到严重的污泥膨胀问题,对于控制污泥膨胀的各种措施进行了研究,如:将完全混合流态改变为推流流态,厌氧出水预曝气,添加厌氧污泥等等。这些方法被证明在某些情况下可以减缓污泥膨胀问题,但是除加填料的方法外,都不能很好地长期控制污泥膨胀的发生4。经过分析,这类的膨胀问

5、题与低负荷(基质限制)膨胀是不同的。在小试和中试中负荷分别为0.65kgBOD5/(kgMLSS·d) 0.85 kg BOD5/(kgMLSS·d)。荷兰De Man等人在处理UASB出水时,采用相对高的负荷( 0.3kgBOD5/( kgMLSS·d)0.6kgBOD5/(kgMLSS·d),也发生污泥膨胀。为了解决这个问题,他们在低负荷(0.12kgBOD5/(kgMLSS·d)下运行,污泥的沉降性能明显改善。虽然可以采用同样的措施控制污泥膨胀,但系统在停留时间和能耗方面没有明显的优势。3高负荷污泥膨胀的控制 3.1负荷和溶解氧的影响采用

6、城市污水负荷为0.4kgBOD5/(kgMLSS·d)0.8kgBOD5/(kgMLSS·d),溶解氧浓度1.0mg/L2.0mg/L,污泥龄为20天的完全混合曝气池(截面积1.0m2,高3.0m)。第一阶段由于丝状菌的过度增殖,SVI从280mL/g上升到800mL/g,污泥浓度下降至0.68g/L,二沉池中污泥不断流失(图1)。一般认为在溶解氧为1.0mg/L2.0mg/L条件下运行的曝气池不会发生污泥膨胀,而试验中溶解氧浓度一直维持在这一水平,仍然发生了污泥膨胀。在第二阶段,从第16天提高溶解氧浓度至3.0mg/L5.0mg/L(平均4mg/L)可以观察到SVI很缓慢

7、地逐渐下降,污泥浓度不断上升,在大约25天后,污泥浓度逐渐回升到1.5g/L,这时SVI下降到300mL/g。一般污泥膨胀发生速度很快,只要23天,而膨胀污泥的恢复很缓慢,往往需要3倍泥龄以上的时间。在一个污泥龄的时间内,观察到污泥沉降性能的明显改善后,由于时间问题没有继续进行观察。 事实上,填料池也相当一个选择器,其将丝状菌固着于填料上在第一个池子中选择性地充分生长,但不进入活性污泥絮体之中。而絮状菌在第二个池内生长,从而避免了污泥膨胀的发生。其主要的作用是降低污水的有机负荷,菌膜的脱落是次要因素。对于有机负荷的降低,是从两方面进行,首先是对有机物的直接去除,这个作用在分设的填料池中最为明显

8、。其次是填料上生长的微生物量,增加了系统中总的生物量,从而降低了有机负荷。加填料控制污泥膨胀的方法很简单,但缺点是增加了一定的投资,还有填料的更换问题。一般适宜小型污水处理厂使用,而大型污水处理厂一般不宜采用。     2007-05-17        3.3池型和曝气强度对污泥膨胀的影响 对城市污水在高负荷下进行如下对比试验,负荷同为0.4kgBOD5/(kgMLSS·d)0.8kgBO D5/(kgMLSS·d),停留时间为4h,气、水比为(3.45

9、)1。在试验中发现呈推流式曝气 (图3) 的SVI要比同样运转条件下的完全混合曝气池的高100左右。在试验中气、水比为3.51的情况下,推流式曝气池的SVI上升到450mL/g左右,二沉池污泥面不断上升,污泥溢流,发生污泥膨胀。强制排泥后,污泥浓度不断下降。这时增加曝气量之后,虽SVI略有下降,但由于污泥浓度恢复较慢。负荷比初始值要大的多,接近1.0kgBOD5/(kgMLSS·d),SVI最终仍在350mL/g左右。     4讨论和结论 4.1广义的选择器理论在以上的分析和研究的基础上,可对选择器的概念进行扩展。事实上,所谓选择即在一个容器

10、中造成利于某种微生物生长的条件,从而达到使其不断增殖的目的。选择器可分为3种不同类型: (1)选择器类型(低基质浓度型膨胀):选择器是在完全混合池或推流曝气池前加生物选择器,在选择器内利用两类细菌不同的生长速率选择性地培养和发展菌胶团细菌,使其成为曝气池中的优势菌。 (2)间歇进水型:如SBR反应器等类型是在时间和空间上造成选择。 (3)广义的选择器(低溶解氧型膨胀):在较高负荷下,由于菌胶团细菌具有高的摄取、贮存有机物的能力,结果没有充分氧化有机物,造成饱和现象。使得菌胶团细菌实际生长速率低于丝状菌。同时也发生了溶解氧限制,易引起污泥膨胀。因此可采用如部分填料池、再生池和强化曝气池等方法,恢复菌胶团细菌的降解能力、提高供氧能力和降低负荷来控制污泥膨胀。 4.2防止污泥膨胀的设计在污泥膨胀的控制中,采取必要的控制手段解除污泥膨胀固然十分重要,但更为重要的是在设计阶段就防止污泥膨胀的发生。为此对不同的污水水质,采取适当的防止污泥澎胀的工艺,在负荷的选择上避免容易引起污泥膨胀的负荷范围,在运行过程中调整正确的运行参数,这都是十分重要的。即使这样由于生产、生

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论