例说三角形中线等分面积的应用_第1页
例说三角形中线等分面积的应用_第2页
例说三角形中线等分面积的应用_第3页
例说三角形中线等分面积的应用_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上例说三角形中线等分面积的应用图1如图1,线段AD是ABC的中线,过点A作AEBC,垂足为E,则SABDBDAE,SADCDCAE,因为BDDC,所以SABDSADC。因此,三角形的中线把ABC分成两个面积相等的三角形.利用这一性质,可以解决许多有关面积的问题。一、求图形的面积图2例1、如图2,长方形ABCD的长为a,宽为b,E、F分别是BC和CD的中点,DE、BF交于点G,求四边形ABGD的面积.分析:因为E、F分别是BC和CD的中点,则连接CG后,可知GF、GE分别是DGC、BGC的中线,而由S=S=,可得S=S,所以DGF、CFG、CEG、BEG的面积相等,问题得

2、解。解:连接CG,由E、F分别是BC和CD的中点,所以S=S=,从而得S=S,可得DGF、CFG、CEG、BEG的面积相等且等于=,因此S四边形=ab4=。例2、在如图3至图5中,ABC的面积为a (1)如图2, 延长ABC的边BC到点D,使CD=BC,连结DA若ACD的面积为S1,则S1=_(用含a的代数式表示);DEABCF图5(2)如图3,延长ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连结DE若DEC的面积为S2,则S2=_(用含a的代数式表示),并写出理由;ABCDE图4图3ABCD(3)在图4的基础上延长AB到点F,使BF=AB,连结FD,FE,得到DEF(如

3、图6)若阴影部分的面积为S3,则S3=_(用含a的代数式表示)发现:像上面那样,将ABC各边均顺次延长一倍,连结所得端点,得到DEF(如图6),此时,我们称ABC向外扩展了一次可以发现,扩展一次后得到的DEF的面积是原来ABC面积的_倍应用:去年在面积为10m2的ABC空地上栽种了某种花卉今年准备扩大种植规模,把ABC向外进行两次扩展,第一次由ABC扩展成DEF,第二次由DEF扩展成MGH(如图5)求这两次扩展的区域(即阴影部分)面积共为多少m2?分析:从第1个图可以发现AC就是ABD的中线,第2个图通过连接DA,可得到ECD的中线DA,后面扩展的部分都可以通过这样的方法得到三角形的中线,从而

4、求出扩展部分的面积,发现规律。解:(1)由CD=BC,可知AC就是ABD的中线,中线AC将ABD的分成两个三角形ABC、ACD,这两个三角形等底等高,所以它们的面积相等;所以S1=a;图6DEABCFHMG(2)若连接DA,则DA就是ECD的中线,中线AD将ECD分成CDA、EDA,它们的面积相等;所以S2=2a;(3)根据以上分析,可知BFD、CED、EAF面积都为2a;所以S2=6a;发现:由题意可知扩展一次后的DEF的面积是SDEF= S3+SABC=6a+a=7a;即扩展一次后的DEF的面积是原来ABC面积的7倍。应用:由以上分析可知扩展一次后S总1=7a,扩展二次后S总2=S总1=7

5、2a,扩展三次后S总3=S总2=73a,拓展区域的面积:(721)10=480(m2)说明:本题是从一个简单的图形入手,逐步向复杂的图形演变,引导我们逐步进行探索,探索出有关复杂图形的相关结论,这是我们研究数学问题的一种思想方法:从特殊到一般的思想。所以我们在平时的学习中,要注意领会数学思想和方法,使自己的思维不断升华。二、巧分三角形例3、如图7,已知ABC,请你用两种不同的方法把它分成面积之比为1:2:3的三个三角形.图7图8图9分析:可以把三角形先两等份,再把其中一个再两等份,所以联想到作三角形的中线。解:方法1:取BC的中点E,然后在BE上取点D,使BDBE,则AD、AE把ABC分成面积之比为1:2:3的三个三角形(如图8).方法2:在BC边上截取DCBC,连结AD,然后取AB的中点P,连结BP、CP,则PAC、PAB、PBC的面积之比为1:2: 3(如图9).想一想:方法2中,这三个三角形的面积之比为什么是1:2:3?二、巧算式子的值图10例2 在数学活动中,小明为了求的值(结果用n表示),设计了如图10所示的几何图形.请你利用这个几何图形求的值.分析:由数据的特征:后面的数为前面一个数的,联想到将三角形的面积不断的平分,所以可以构造如图10的图形进行求解。解:如图10,设大三角形的面积为1,然后不断的按顺序作出各个三角形的中线,根据三角形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论