26章圆小结与复习教案(三课时)_第1页
26章圆小结与复习教案(三课时)_第2页
26章圆小结与复习教案(三课时)_第3页
26章圆小结与复习教案(三课时)_第4页
26章圆小结与复习教案(三课时)_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、教学时间课题二次函数小结与复习(1)课型新授课教学目标知识和能力理解二次函数的概念,掌握二次函数yax2的图象与性质;会用描点法画抛物线,能确定抛物线的顶点、对称轴、开口方向,能较熟练地由抛物线yax2经过适当平移得到ya(xh)2k的图象。过程和方法情感态度价值观教学重点用配方法求二次函数的顶点、对称轴,根据图象概括二次函数yax2图象的性质。教学难点二次函数图象的平移。教学准备教师多媒体课件学生“预习课文、学习袋、学习用具”课 堂 教 学 程 序 设 计设计意图一、结合例题精析,强化练习,剖析知识点 1二次函数的概念,二次函数yax2 (a0)的图象性质。 例:已知函数是关于x的二次函数,

2、求:(1)满足条件的m值;(2)m为何值时,抛物线有最低点?求出这个最低点这时当x为何值时,y随x的增大而增大?(3)m为何值时,函数有最大值?最大值是什么?这时当x为何值时,y随x的增大而减小? 学生活动:学生四人一组进行讨论,并回顾例题所涉及的知识点,让学生代表发言分析解题方法,以及涉及的知识点。 教师精析点评,二次函数的一般式为yax2bxc(a0)。强调a0而常数b、c可以为0,当b,c同时为0时,抛物线为yax2(a0)。此时,抛物线顶点为(0,0),对称轴是y轴,即直线x0。 (1)使是关于x的二次函数,则m2m42,且m20,即:m2m42,m20,解得;m2或m3,m2 (2)

3、抛物线有最低点的条件是它开口向上,即m20, (3)函数有最大值的条件是抛物线开口向下,即m20。抛物线的增减性要结合图象进行分析,要求学生画出草图,渗透数形结合思想,进行观察分析。 强化练习;已知函数是二次函数,其图象开口方向向下,则m_,顶点为_,当x_0时,y随x的增大而增大,当x_0时,y随x的增大而减小。 2。用配方法求抛物线的顶点,对称轴;抛物线的画法,平移规律,例:用配方法求出抛物线y3x26x8的顶点坐标、对称轴,并画出函数图象,说明通过怎样的平移,可得到抛物线y3x2。 学生活动:小组讨论配方方法,确定抛物线画法的步骤,探索平移的规律。充分讨论后让学生代表归纳解题方法与思路。

4、 教师归纳点评: (1)教师在学生合作讨论基础上强调配方的方法及配方的意义,指出抛物线的一般式与顶点式的互化关系: yax2bxcya(x)2 (2)强调利用抛物线的对称性进行画图,先确定抛物线的顶点、对称轴,利用对称性列表、描点、连线。 (3)抛物线的平移抓住关键点顶点的移动,分析完例题后归纳; 投影展示: 强化练习: (1)抛物线yx2bxc的图象向左平移2个单位。再向上平移3个单位,得抛物线yx22x1,求:b与c的值。 (2)通过配方,求抛物线yx24x5的开口方向、对称轴及顶点坐标,再画出图象。 3知识点串联,综合应用。 例:如图,已知直线AB经过x轴上的点A(2,0),且与抛物线y

5、ax2相交于B、C两点,已知B点坐标为(1,1)。 (1)求直线和抛物线的解析式; (2)如果D为抛物线上一点,使得AOD与OBC的面积相等,求D点坐标。 学生活动:开展小组讨论,体验用待定系数法求函数的解析式。 教师点评:(1)直线AB过点A(2,0),B(1,1),代入解析式ykxb,可确定k、b,抛物线yax2过点B(1,1),代人可确定a。 求得:直线解析式为yx2,抛物线解析式为yx2。 (2)由yx2与yx2,先求抛物线与直线的另一个交点C的坐标为(2,4),SOBCSABCSOAB3。 SAODSOBC,且OA2 D的纵坐标为3 又 D在抛物线yx2上,x23,即x±

6、D(,3)或(,3) 强化练习:函数yax2(a0)与直线y2x3交于点A(1,b),求: (1)a和b的值;(2)求抛物线yax2的顶点和对称轴; (3)x取何值时,二次函数yax2中的y随x的增大而增大, (4)求抛物线与直线y2两交点及抛物线的顶点所构成的三角形面积。二、课堂小结 1让学生反思本节教学过程,归纳本节课复习过的知识点及应用。 2。投影:完成下表:作业设计必做教科书P31:1-9选做教科书P32:10、11教学反思教学时间课题二次函数小结与复习(2)课型新授课教学目标知识和能力会用待定系数法求二次函数的解析式,能结合二次函数的图象掌握二次函数的性质,能较熟练地利用函数的性质解

7、决函数与圆、三角形、四边形以及方程等知识相结合的综合题。过程和方法情感态度价值观教学重点用待定系数法求函数的解析式、运用配方法确定二次函数的特征。教学难点会运用二次函数知识解决有关综合问题。教学准备教师多媒体课件学生“预习课文、学习袋、学习用具”课 堂 教 学 程 序 设 计设计意图一、例题精析,强化练习,剖析知识点 用待定系数法确定二次函数解析式 例:根据下列条件,求出二次函数的解析式。 (1)抛物线yax2bxc经过点(0,1),(1,3),(1,1)三点。 (2)抛物线顶点P(1,8),且过点A(0,6)。 (3)已知二次函数yax2bxc的图象过(3,0),(2,3)两点,并且以x1为

8、对称轴。 (4)已知二次函数yax2bxc的图象经过一次函数y3/2x3的图象与x轴、y轴的交点;且过(1,1),求这个二次函数解析式,并把它化为ya(xh)2k的形式。学生活动:学生小组讨论,并让学生阐述解题方法。教师归纳:二次函数解析式常用的有三种形式: (1)一般式:yax2bxc (a0) (2)顶点式:ya(xh)2k (a0) (3)两根式:ya(xx1)(xx2) (a0) 当已知抛物线上任意三点时,通常设为一般式yax2bxc形式。 当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式ya(xh)2k形式。 当已知抛物线与x轴的交点或交点横坐标时,通常设为两根式ya(xx1)(

9、xx2) 强化练习:已知二次函数的图象过点A(1,0)和B(2,1),且与y轴交点纵坐标为m。 (1)若m为定值,求此二次函数的解析式; (2)若二次函数的图象与x轴还有异于点A的另一个交点,求m的取值范围。二、知识点串联,综合应用 例:如图,抛物线yax2bxc过点A(1,0),且经过直线yx3与坐标轴的两个交点B、C。 (1)求抛物线的解析式; (2)求抛物线的顶点坐标, (3)若点M在第四象限内的抛物线上,且OMBC,垂足为D,求点M的坐标。 学生活动:学生先自主分析,然后小组讨论交流。教师归纳: (1)求抛物线解析式,只要求出A、B,C三点坐标即可,设yx22x3。 (2)抛物线的顶点

10、可用配方法求出,顶点为(1,4)。 (3)由|0B|OC|3 又OMBC。 所以,OM平分BOC 设M(x,x)代入yx22x3 解得x 因为M在第四象限:M(, )题后反思:此题为二次函数与一次函数的交叉问题,涉及到了用待定系数法求函数解析式,用配方法求抛物线的顶点坐标;等腰三角形三线合一等性质应用,求M点坐标时应考虑M点所在象限的符号特征,抓住点M在抛物线上,从而可求M的求标。 强化练习;已知二次函数y2x2(m1)xm1。(1)求证不论m为何值,函数图象与x轴总有交点,并指出m为何值时,只有一个交点。 (2)当m为何值时,函数图象过原点,并指出此时函数图象与x轴的另一个交点。 (3)若函

11、数图象的顶点在第四象限,求m的取值范围。三、课堂小结 1投影:让学生完成下表:2归纳二次函数三种解析式的实际应用。3强调二次函数与方程、圆、三角形,三角函数等知识综合的综合题解题思路。作业设计必做练习册P133-136选做练习册P137教学反思教学时间课题二次函数小结与复习(3)课型新授课教学目标知识和能力1使学生掌握二次函数模型的建立,并能运用二次函数的知识解决实际问题。2能够分析和表示不同背景下实际问题中变量之间的二次函数关系,获得用数学方法解决实际问题的经验,感受数学模型、思想在实际问题中的应用价值。过程和方法情感态度价值观教学重点利用二次函数的知识解决实际问题,并对解决问题的策略进行反

12、思。教学难点将实际问题转化为函数问题,并利用函数的性质进行决策。教学准备教师多媒体课件学生“预习课文、学习袋、学习用具”课 堂 教 学 程 序 设 计设计意图一、例题精析,引导学法,指导建模 1何时获得最大利润问题。 例:重庆市某区地理环境偏僻,严重制约经济发展,丰富的花木产品只能在本地销 售,区政府对该花木产品每投资x万元,所获利润为P= (x30)210万元,为了响应我国西部大开发的宏伟决策,区政府在制定经济发展的10年规划时,拟开发此花木产品,而开发前后可用于该项目投资的专项资金每年最多50万元,若开发该产品,在前5年中,必须每年从专项资金中拿出25万元投资修通一条公路,且5年修通,公路

13、修通后,花木产品除在本地销售外,还可运往外地销售,运往外地销售的花木产品,每投资x万元可获利润Q=(50x)2 (50x)308万元。 (1)若不进行开发,求10年所获利润最大值是多少? (2)若按此规划开发,求10年所获利润的最大值是多少? (3)根据(1)、(2)计算的结果,请你用一句话谈谈你的想法。 学生活动:投影给出题目后,让学生先自主分析,小组进行讨论。 教师活动:在学生分析、讨论过程中,对学生进行学法引导,引导学生先了解二次函数的基本性质,并学会从实际问题中抽象出二次函数的模型,借助二次函数的性质来解决这类实际应用题。 教师精析: (1)若不开发此产品,按原来的投资方式,由P= (

14、x30)210知道,只需从50万元专款中拿出30万元投资,每年即可获最大利润10万元,则10年的最大利润为M110×10=100万元。 (2)若对该产品开发,在前5年中,当x=25时,每年最大利润是:P (2530)210=9.5(万元) 则前5年的最大利润为M2=9.5×5=47.5万元 设后5年中x万元就是用于本地销售的投资。 则由Q (50x)(50x)308知,将余下的(50x万元全部用于外地销售的投资才有可能获得最大利润; 则后5年的利润是: M3(x30)210×5(x2x308)×55(x20)23500 故当x20时,M3取得最大值为35

15、00万元。 10年的最大利润为MM2M33547.5万元 (3)因为3547.5100,所以该项目有极大的开发价值。 强化练习:某公司试销一种成本单价为500元/件的新产品,规定试销时的销售单价不低于成本单价,又不高于800元/件,经试销调查,发现销售量y(件)与销售单价x(元/件)可近似看做次函数ykxb的关系,如图所示。 (1)根据图象,求一次函数ykxb的表达式, (2)设公司获得的毛利润(毛利润销售总价成本总价)为S元,试用销售单价x表示毛利润S;试问销售单价定为多少时,该公司可获得最大利润?最大利润是多少?此时的销售量是多少? 分析:(1)由图象知直线ykxb过(600,400)、(

16、700,300)两点,代入可求解析式为yx1000 (2)由毛利润S销售总价成本总价,可得S与x的关系式。 Sxy500yx·(x1000)500(x100) x21500x500000(x750)262500 (500x800) 所以,当销售定价定为750元时,获最大利润为62500元。 此时,yx10007501000250,即此时销售量为250件。 2最大面积是多少问题。 例:某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形的边长为x,面积为S平方米。 (1)求出S与x之间的函数关系式; (2)请你设计一个方案,使获得的设计费最多,并求出这个设

17、计费用; (3)为了使广告牌美观、大方,要求做成黄金矩形,请你按要求设计,并计算出可获得的设计费是多少?(精确到元) (参与资料:当矩形的长是宽与(长宽)的比例中项时,这样的矩形叫做黄金矩形,2.236) 学生活动:让学生根据已有的经验,根据实际几何问题中的数量关系,建立恰当的二次函数模型,并借助二次函数的相关知识来解决这类问题。 教师精析: (1)由矩形面积公式易得出Sx·(6x)x26x (2)确定所建立的二次函数的最大值,从而可得相应广告费的最大值。 由Sx26x(x3)29,知当x3时,即此矩形为边长为3的正方形时,矩形面积最大,为9m2,因而相应的广告费也最多:为9×100090

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论