




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、ELECTRONICRESEARCHANNOUNCEMENTSOFTHEAMERICANMATHEMATICALSOCIETYVolume3,Pages99104(September17,1997)S1079-6762(97)00031-0ACOMPLETEVINOGRADOV3-PRIMESTHEOREMUNDERTHERIEMANNHYPOTHESISJ.-M.DESHOUILLERS,G.EFFINGER,H.TERIELE,ANDD.ZINOVIEV(CommunicatedbyHughMontgomery)Abstract.WeoutlineaproofthatiftheGenera
2、lizedRiemannHypothesisholds,theneveryoddnumberabove5isasumofthreeprimenumbers.Theproofinvolvesanasymptotictheoremcoveringallbutanitenumberofcases,anintermediatelemma,andanextensivecomputation.1.IntroductionBy“The3-PrimesProblem,”wemean:caneveryoddnumbergreaterthan5bewrittenasasumofthreeprimenumbers?
3、ThisproblemwasrstsuccessfullyattackedbyHardyandLittlewoodintheirseminal1923paper6;usingtheirCircleMethodandassuminga“WeakGeneralizedRiemannHypothesis,”theyprovedthateverysucientlylargeoddnumbercouldbesowritten.Thesecondauthorhascalculated4directlyfromthatpaperthat“sucientlylarge,”assumingthe“full”Ge
4、neralizedRiemannHypothesis(GRHbelow,i.e.,thatallnon-trivialzerosofallDirichletL-functionshaverealpartequalto1/2),isapproximately1050.In1926Lucke11,inanunpublisheddoctoralthesisunderEdmundLandau,hadalreadyshownthatwithsomerenementsthegurecouldbetakenas1032.In1937Vinogradov15usedhisingeniousmethodsfor
5、estimatingexponentialsumstoestablishthedesiredasymptoticresultwhileavoidingtheGRHentirely.However,thenumericalimplicationsofavoidingtheGRHaresubstantial:in1956Borodzkin1showedthatsucientlylargeinVinogradovsproofmeantnumbers15greaterthan33107000000.Thisgurehassincebeenimprovedsignicantly,mostrecently
6、byChenandWang2,whohaveestablishedaboundof1043000,butinanycasethisgureisfarbeyondhopeof“checkingtheremainingcasesbycomputer.”If,however,wereturntotheoriginalstanceofHardyandLittlewoodbyassumingthetruthoftheGRHwhileatthesametimeusingsomeoftherenedtechniquesofprimarilyVinogradovandLinnik10,andusinganex
7、tensivecomputersearch,wedoindeedarriveatthefollowing:Theorem.AssumingtheGRH,everyoddnumbergreaterthan5canbeexpressedasasumofthreeprimenumbers.ReceivedbytheeditorsFebruary26,1997.1991MathematicsSubjectClassication.Primary11P32.Keywordsandphrases.Goldbach,Vinogradov,3-primesproblem,Riemannhypothesis.c
8、1997AmericanMathematicalSociety99100J.-M.DESHOUILLERS,G.EFFINGER,H.TERIELE,ANDD.ZINOVIEVTheproofofthisresultfallsnaturallyintothreeparts:anasymptotictheo-remhandlingallbutanitenumberofcases,alemmaassuringtheexistenceofprimesrelativelynearuncheckedoddnumbers,andacomputersearchfor2-primesrepresentatio
9、nsoftheremainingdierences.Wenowoutlineeachoftheseparts.2.TheasymptotictheoremTheorem(Zinoviev).AssumingtheGRH,everyoddnumbergreaterthan1020isasumofthreeprimenumbers.Wediscussherebrieythemainideasbehindthisresult;forcompletedetailssee16.FixN9.Weareinterestedinthenumberoftriples(p1,p2,p3)ofprimenumber
10、swhichsatisfytheequation(1)N=p1+p2+p3.Following10weintroducethefunction log(p1)log(p2)log(p3),J(N)=p1+p2+p3=Nwherethesumrangesoveralltriplesofprimes(2).IfJ(N)>0thenthereisatleastonesolutionof(1).Hereby(n)(nisalwaysanaturalnumber)wedenotevonMangoldtsfunction:(n)=log(p)ifn=pk(pisprime),and(n)=0othe
11、rwise.Foranyrealnumberset (n)e2inen/N.S()=n>1ThenwehaveS()=p>1log(p)e2ipep/N+N0.5log2(N),where|1.Clearly,foranyintegerm 11e2imd=00ifm=0,ifm=0.Changingtheorderofsummationandintegration(see10),forsomenewreal(|1)weobtain 1wS3()e2iNd+N1.5log3(N),J(N)=ewwherew=w(N)isasmallnumberdenedlater.Wewillexp
12、ressJ(N)asasumoftheleadingtermandtheremainder.Estimatingtheremainderfromabove,wewillshowthatitislessthantheleadingtermwhenN1020.WethenconcludethatJ(N)>0.FollowingLinnikandVinogradov,wesubdividetheintervalw,1wintothe ,E1,E2.Ourmainideaistorenethissubdivision.disjointunionofsubsetsE1 Inparticularwe
13、changethesetof“majorarcs”,whichinourcaseisE1,makingtheintervalsfromthissetsmaller.Wedoitasfollows.LetQ=1.1log2(N),=4900log4(N),w=1/.ACOMPLETEVINOGRADOV3-PRIMESTHEOREM101DenotebyE(a,q)(whereifq>1,then(a,q)=1,0<a<q,andifq=1,thena=0)theinterval 1a1a,+.qqqqThen a1a1w,1w=,+.qqqq0<q0a<q(q,a
14、)=1LetE1=E(a,q),qQandE2=w,1wE1. Finally,denotebyE1thesetofintervalsE1withsmallerlength a2log(N)a2log(N),+,q(q)Nq(q)NandsetE1=E1E1. WesplittheintegralJ(N)intotwointegrals:overE1(theleadingterm)and E1E2(theremainder).Thefollowinglemmaisusedtoestimatetheremainderterm.Lemma.ForanyE1E2,andforanyN>1020
15、(notnecessarilyodd),GRHimpliesthatN.|S()|<0.18log(N)TheproofofthislemmausestheRiemann-HadamardmethodwhichinvolvessummationoverthezeroesofL-functions.TheleadingtermistreatedusingthecirclemethodofHardyandLittlewood,asusedbyVinogradovandLinnik.3.AnintermediatelemmaNow,bytheasymptotictheorem,ourprobl
16、emisreducedtoconsideringoddnumberswhichare1020.Forthese,weneedthefollowing:Lemma.IftheGRHholdsandif6n1020,thenthereexistsaprimenumberpsuchthat4np1.615×1012.Proof.Theconclusionofthelemmaobviouslyholdsforn <1012,say.Forlargern,weapplySchoenfeld13,equation(6.1).Let(n)=pnlogp;iftheGRHholds,andif
17、n23×108,wehave1n2)logn.|(n)n|<8Justsupposethatthereisnoprimeintheinterval(nh,nexceptpossiblyfortwoofthesixconsecutivenumbersfromn5throughn;thenwehave2logn>(n)(nh)=(n)n)(nh)(nh)+h,whencebytheabove,1n2)logn+2logn.4Sincen1020,wegeth<1.615×1012.Weconcludethenthattheremustbeaprimepsuch
18、that4np1.615×1012.h<102J.-M.DESHOUILLERS,G.EFFINGER,H.TERIELE,ANDD.ZINOVIEVWenoteherethattheGRHactuallyimpliesanestimateon|(n)n|whichhasasinglelogfactor;seeIvic7forexample.However,thesecondauthor,inworkingthroughthedetailsofsuchanestimate,foundthattheconstantobtainedwaslargeenoughsothat,atth
19、eleveln=1020,Schoenfeldsestimategivesaslightlybetternumericalresult.4.Thecomputersearchfor2-primesrepresentationsFinally,then,ifnisanoddnumber1020andpisasinthepreviouslemma,thenm=npisevenand1.615×1012.Butformwehavethefollowing:Theorem(DeshouillersandteRiele).Everyevennumber4m1013isasumoftwoprim
20、enumbers.Foracompleteexpositionofthisandrelatedresults,see3.Letpibetheithoddprimenumber.Theusualapproach5,14toverifytheGoldbachconjectureonagivenintervala,bistond,foreveryevenea,b,thesmallestoddprimepisuchthatepiisaprime.AnecientwaytodothisistogeneratethesetofprimesQ(a,b)=q|qprimeanda aqb,where aisc
21、hoseninasuitableway,andtogeneratethesetsofevennumbersE0E1E2···,denedbyE0=,Ei+1=Ei(Q(a,b)+pi+1),i=0,1,.,1untilEjcoversalltheevennumbersintheintervala,bforsomej.ThesetQ(a,b)isgeneratedwiththesieveofEratosthenes:thisisthemosttime-consumingpartofthecomputation.Forthechoiceof aitissucientt
22、hat aexceedsthelargestoddprimeusedinthegenerationofthesetsEj.InthecomputationscheckingtheGoldbachconjectureupto4×101114,thelargestsmalloddprimeneededwasp446=3163(thisisthesmallestprimepforwhich244885595672pisprime).Amoreecientidea,whichwehaveimplemented,istond,foreveryevenea,b,aprimeq,closetoa,
23、forwhicheqisaprime.Todothateciently,asetofkconsecutiveprimesq1,q2,.,qkclosetoaisgenerated,forsuitablychosenk,andalargesetPofalltheoddprimesuptoaboutbaisprecomputed(withthesieveofEratosthenes)inordertocheckthenumberseqforprimality.Fortheactualcheckoftheintervala,b,wegeneratethesetsofevennumbersF0F1F2
24、···,denedbyF0=,Fi+1=Fi(P+qi+1),i=0,1,.,untilFjcoversalltheevennumbersintheintervala,bforsomej.Inourexperi-ments,wehavechosentheintervalsa,btohaveaxedlengthof108.ThelargestpossibleprimewemayneedinthesetPliesclosetobq1.Bytheprimenumbertheorem,q1akloga,sothatbq1108+kloga.Forthechoiceofkw
25、enoticethatthedensityoftheoddprimesamongtheoddnumbersupto108isabout0.115(thereare5761454oddprimesbelow108).Thismeansthataproportionofabout0.885oftheevennumbersina,bisnotcoveredbythesetF1=P+q1;iftheprimesupto108wereuniformlydistributed,whichtheyarenot,aproportionofabout0.8852oftheevennumberswouldnotb
26、ecoveredbyF2.After151steps,thisproportionisreducedtobelow108.Itturnedoutthatk=360wassucient1ByQ(a,b)+pi+1wemeantheset:q+pi+1|qQ(a,b).ACOMPLETEVINOGRADOV3-PRIMESTHEOREM103forourexperiments.Fora1013thisimpliesthatthelargestprimeinthesetPmusthaveasizecloseto108+104.Intherstapproach,asmallsetofsmallprim
27、esupto5000,say,hastobeavailable,andforeachintervala,btobetreated,alltheprimesina,bhavetobegenerated.Inthesecondapproach,alargesetofsmallprimesuptoabout108+104hastobegenerated(onlyonce),andforeachintervala,btobetreated,onehastondthelargestkprimesa.Ofcourse,thisismuchcheaperthantondalltheprimesinthein
28、tervala,b.Thepricetopayisthatforeachea,bsomeprimepisfoundforwhichepisprime,butingeneralthispisneitherthesmallestnorthelargestsuchprime.FortheactualgenerationofkprimesclosetoawehaveusedJaeschkescompu-tationalresults8,statingthatifapositiveintegern<2152302898747isastrongpseudoprimewithrespecttother
29、stveprimes2,3,5,7,11,thennisprime;correspondingboundsfortherstsixandsevenprimesare3474749660383and341550071728321,respectively.WehaveimplementedthesecondapproachonaCrayC98vectorcomputerandveriedtheGoldbachconjectureforallevennumbers>4×1011and1013.Afterthegenerationofkprimesneara,theactualver
30、icationwascarriedoutbysievingwithalongarrayof64-bitintegerscalledODD,whereeachbitrepresentsanoddnumber<108+104,thebitbeing1ifthecorrespondingoddnumberisprime,and0ifitiscomposite.GeneratingFi+1fromFiamountstodoingan“or”operationbetweenonelongarrayofintegersandashiftedversionofthearrayODD.Thiscanbe
31、carriedoutveryecientlyontheCrayC98.Inonetypicalrun,wehandled5000consecutiveintervalsoflength108.Closeto1013thetimetogenerate5000×360largeprimeswasabout2600CPU-seconds,andthetotalsievingtimewasabout5040seconds.Thetotaltimeusedtocovertheinterval4×1011,1013wasapproximately53(lowpriority)CPU-h
32、ours.Thelargestnumberoflargeprimeswhichweneededwas328:fore=7379095622422andrstprimeq1=7378999992031itturnedoutthateqiiscompositefori=1,.,327,andprimefori=328(q328=7379000002739andeq328=95619683).AcknowledgmentThesecondauthorwishestothankPaulT.BatemanandMarshallAshforhelpfulcorrespondencesonthistopic
33、.References1.K.G.Borodzkin,OnI.M.Vinogradovsconstant,Proc.3rdAll-UnionMath.Conf.,vol.1,Izdat.Akad.NaukSSSR,Moscow,1956.(Russian)MR20:6973a2.JingrunChenandTianzeWang,OntheoddGoldbachproblem,ActaMath.Sinica32(1989),702718.MR91e:111083.Jean-MarcDeshouillers,HermanteRiele,andYannickSaouter,Newexperiment
34、alresultsconcerningtheGoldbachconjecture,toappear.4.GoveEnger,SomenumericalimplicationoftheHardyandLittlewoodanalysisofthe3-primesproblem,submittedforpublication.5.A.Granville,J.vandeLune,andH.teRiele,CheckingtheGoldbachconjectureonavectorcomputer,NumberTheoryandApplications(R.A.Mollin,ed.),KluwerAc
35、ademicPublishers,1989,423433.MR93c:110856.G.H.HardyandL.E.Littlewood,SomeproblemsofPartitioNumerorum.III:Ontheexpressionofanumberasasumofprimes,ActaMathematica44(1922),170.7.A.Ivic,TheRiemannzeta-function,J.WileyandSons,1985.MR87d:11062104J.-M.DESHOUILLERS,G.EFFINGER,H.TERIELE,ANDD.ZINOVIEV8.GerhardJaeschke,Onstrongpseudoprimestoseveralbases,Math.Comp.61(1993),915926.MR94d:110049.A.A.Karatsuba,Basicanalyticnumbertheory,Springer-Verlag,1993.MR94a:1100110.U.V.Linnik,Th
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025办公设备购销合同协议书
- 2025非全日制工作人员人事档案保管合同书
- 毕业设计致谢7篇
- 毕业致谢合集8篇
- 地下建筑结构防腐保温施工技术方案
- 7.1酸及其性质(第二课时)课堂说课稿-2023-2024学年九年级化学鲁教版下册
- 分布式光伏项目设备调试方案
- 2025年眼科常见眼病诊治能力检测答案及解析
- 《2025工程技术人员劳动合同书》
- 2025年疼痛科疼痛管理知识测验真题解析
- 高中通用技术会考试题及详解
- 安全教育:不私自离开幼儿园
- 泛光施工招标文件
- 旅游策划实务整套课件完整版电子教案课件汇总(最新)
- 刑法各论(第四版全书电子教案完整版ppt整套教学课件最全教学教程)
- 人工挖孔桩施工监测监控措施
- 第7章:方差分析课件
- 国家职业技能标准 (2021年版) 6-18-01-07 多工序数控机床操作调整工
- 办公楼加层改造施工组织设计(100页)
- 洁净厂房不锈钢地面施工方案
- DS6-K5B计算机联锁系统介绍文稿
评论
0/150
提交评论