



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 <<平面直角坐标系>>提优讲义典型例题:例1、如果点M(1-x,1-y) 在第二象限,那么点N(1-x,y-1)在第 象限,点Q(x-1,1-y)在第 象限。例2、已知点P(x, ),则点P一定 ( ) A在第一象限 B在第一或第四象限 C在x轴上方 D不在x轴下方例3、在平面直角坐标系中,平行四边形ABCD的顶点A、B、D的坐标分别为(0,0),(5,0),(2,3)则顶点C的坐标为( ) A(3,7) B(5,3) C(7,3) D(8,2)例4、在平面直角坐标系上点A(n,1-n)一定不在 ( ) A第一象限 B第二象限 C第三象限 D第四象限 例5、M的坐标为
2、(3k-2,2k-3)在第四象限,那么k的取值范围是例、已知点A(,)ABAB,那么B点的坐标为例、如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(-1,1),第四次向右跳动5个单位至点A4(3,2),依此规律跳动下去,点A第100次跳动至点A100的坐标是例、如图,将边长为1的正三角形OAP沿x轴正方向连续翻转次,点P依次落在点P1,P2,P3P的位置,则点的坐标为例、在平面直角坐标系中,点坐标为,AB的面积为,那么点坐标为例、实验与探究:(1) 由图观察易知A(0,2)关于直线l的对称点的坐标为(2,0),请在图中分别标明456-4-5-6-4-5-6567xylBE12
3、3-1-2-3-1-2-31234OAA'D''CB(5,3) 、C(-2,5) 关于直线l的对称点、的位置,并写出他们的坐标: 、 ;(2) 结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点的坐标为 (3) 已知两点D(1,-3)、E(-3,-4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小,并求出Q点坐标巩固提高:、点(,)到x轴的距离为;点(-,)到y轴的距离为;点C到x轴的距离为1,到y轴的距离为3,且在第三象限,则C点坐标是。、已知点A(a,b)在第四象限,那么点B(b,a)在( )A第一象
4、限 B第二象限 C第三象限 D第四象限、已知长方形ABCD中,AB=5,BC=8,并且ABx轴,若点A的坐标为(2,4),则点C的坐标为_。、三角形ABC三个顶点的坐标分别是A(-,-1),B(1,),C(-1,),三角形AB的面积为、点P(-1,),那么点P不可能在第象限。、在平面直角坐标系中,点P(,)点在轴上,为等腰三角形,那么符合条件的点有()。A 个 B个 C 个 D个、 三角形ABC三个顶点的坐标分别是A(-4,-1),B(1,1),C(-1,4),将三角形ABC平移平移后三个顶点的坐标可能是( ) A(2,2),(3,4),(1,7) B(-2,2),(4,3),(1,7) C(
5、-2,2),(3,4),(1,7) D(2,-2),(3,3),(1,7)、如图,将边长为1的正方形OAPB沿z轴正方向连续翻转2006次,点P依次落在点P1,P2,P3,P4,P2006的位置,则P2006的横坐标x2006=、如图为风筝的图案(1)若原点用字母O表示,写出图中点A,B,C的坐标(2)试求(1)中风筝所覆盖的平面的面积、点A(0,1),点B(0,-4),点C在x轴上,如果三角形ABC的面积为15,(1)求点C的坐标.(2)若点C不在x轴上,那么点c的坐标需满足什么样的条件(画图并说明)、我们知道,任意两点关于它们所连线段的中点成中心对称,在平面直角坐标系中,任意两点P(x1,y1)、Q(x2,y2)的对称中心的坐标为观察应用:(1)如图,在平面直角坐标系中,若点P1(0,-1)、P2(2,3)的对称中心是点A,则点A的坐标为 ;(2)另取两点B(-1.6,2.1)、C(-1,0)有一电子青蛙从点P1处开始依次关于点A、B、C作循环对称跳动,即第一次跳到点P1关于点A的对称点P2处,接着跳到点P2关于点B的对称点P3处,第三次再跳到点P3关于点C的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国石墨化碳材料项目商业计划书
- 中国绝缘材料项目创业计划书
- 2025年中国四氟异酞酸项目商业计划书
- 中国电子特种气体项目商业计划书
- 中国食品级磷酸盐项目创业计划书
- 观影课件教学课件
- 2024年江门市公安局警务辅助人员招聘真题
- 中国工业大麻纤维项目投资计划书
- 中国岩盐项目商业计划书
- 过敏性鼻炎诊疗规范学习手册
- 公安辅警考试题库
- 高中通用技术《结构与设计》练习题(附答案解析)
- GB/T 8918-2006重要用途钢丝绳
- GB/T 6620-2009硅片翘曲度非接触式测试方法
- 注塑行业ISO9001体系品质检验控制程序
- 企业财务管理咨询
- Unit 2 Lesson 3 Running and Fitness课件-高中英语北师大版必修第一册
- 《工程伦理学》工程中的诚信与道德问题 课件
- 电影与女性主义(电影理论课程课件)
- 家庭照护员理论考试备考题库(含答案)
- 幼儿园大班综合《我们和手机》课件
评论
0/150
提交评论