




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、专题测试数列与不等式数列与不等式均是高中数学中的重要内容,所以在高考中占有重要的地位. 高考对这两部分的考查比较全面,在近年来的全国各地高考试题中,常常综合在一起考查这两部分知识,尤其是在解答题中较为明显. 在高考试题中,数列与不等式这部分知识所占分值大约是20分. 解答题多为中等以上难度的试题,突出考查考生的思维能力,解决问题的能力,试题有较好的区分度. 有关数列的综合题,经常把数列知识与不等式的知识综合起来,其中还蕴含着丰富的数学思想,通常要用到放缩法以及函数思想(求函数的最值等). 这就要求考生能够灵活地运用相关数列的性质与不等式的方法去解决相关问题. 估计2008年全国各地的高考试题中
2、仍会出现数列与不等式的综合问题,因此考生在复习过程中应当注意掌握数列与不等式中的常见方法,并注意积累一些特殊的方法,从而做到灵活处理相关的问题.本试卷分第卷(选择题)和第卷(非选择题)两部分. 满分为150分,考试时间为120分钟.第卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1在数列an中,a1=14,3an=3an+1+2,则使anan+2<0成立的n值是( ) A.21 B.22 C.23 D.242已知数列an的前n项和Sn=n2-9n+2008,则满足5<ak<8的k=( ) A.9
3、 B.8 C.7 D.63.(理)已知数列an的通项公式是(其中nN*),那么数列an的最大项是( ) A.a2006 B. a2007 C. a2006或a2007 D. a2008 (文)已知数列an的通项公式是an=-n2+n(其中nN*)是一个单调递减数列,则常数的取值范围( ) A.(3,+) B.(-,3) C. D.4数列an的通项公式是关于x的不等式x2-x<nx(nN*)的解集中的整数个数,则数列an的前n项和Sn=( ) A.n2 B.n(n+1) C. D.(n+1)(n+2)5若数列an、bn的通项公式分别是an=(-1)n+2007·a,且an<
4、bn,对任意nN*恒成立,则常数a的取值范围是( ) A.(-2,1) B. C. D.(-2,)6在等差数列an中,a10<0,a11>0且a11>|a10|,Sn是数列an的前n项和,则使Sn>0的n的最小值是( ) A.21 B.20 C.10 D.117(理)已知首项为a、公比为q(0<|q|<1)的无穷等比数列an的各项和是S,其前n项和是Sn,且(Sn-q2S)=q,则a的取值范围是( ) A. B.C. D.(文)无穷数列1,的前( )项和开始大于10( )A.99 B.100 C.101 D.1028已知数列an的通项公式是an=-n2+12
5、n-32,其前n项和是Sn,则对任意的n>m(其中n、mN*),Sn- Sm的最大值是( ) A.5 B.10 C.15 D.209已知等差数列an的前n项和是Sn,且a1=2008,且存在自然数p10,使得Sp=ap,则当n>p时,Sn与an的大小关系是( ) A.anSn B.an>Sn C.anSn D.an< Sn10已知等差数列an的前n项和是,则使an<-2006成立的最小正整数n=( ) A.2009 B.2010 C.2011 D.201211已知集合M=0,2,无穷数列an满足anM,且p=,则p一定不属于区间( ) A. B. C. D.12已
6、知某企业2006年的生产利润逐月增加,为了更好地发展企业,该企业也同时在改造建设. 其中一月份投入的建设资金恰好一月份的利润相等,且与每月增加的利润相同. 随着投入的建设资金的逐月增加,且每月增加投入的百分率相同,到十二月份投入的建设资金又恰与十二月份的生产利润相同. 则该企业在2006年的总利润M与总投入资金N的大小关系是 A.M>N B.M<N CM=N D.M、N的大小关系不确定第卷(非选择题) 共90分)二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中的横线上.13(理)在正项等比数列an中,a2a8=,a1+a9的最小值是m,且3a=m,其中a(k,k+1
7、),则整数k= . (文)在正项等比数列an中,a2a8=25,a1+a9的最小值是m= .14(理)一张厚度为0.1 mm的矩形纸片,每次将此纸片沿一组对边的中点连线对折,则经过 次这样的折叠后其厚度开始大于100 m(假设这样的折叠是可以实现的,参考数据:lg 2=0.3010).(文)一种机械设备的价格为200000元,假设维护费第一年为1000元,以后每年增加1000元,当此设备的平均费用为最小时为最佳更新年限,那么此设备的最佳更新年限为 .15在ABC中,内角A、B、C的对边分别是a、b、c,且a2,b2,c2成等差数列,则sinB的最大值是 .16(理)设正数数列an的前n项之和是
8、bn,数列bn前n项之积是cn,且bn+cn=1,则数列中最接近108的项是第 项.(文)在等比数列an中,a1=,公比q=,其前n项之和是Sn,x=S10(S20+S30),y=,则x,y的大小关系是 .三、解答题:本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤.17(本小题满分10分)已知数列an是递增等差数列,前n项和为Sn,a1=2,且a1,a2,a4成等比数列.(1)求an的通项公式;(2)令,当n为何正整数时,Tn>Tn+1?若对一切正整数n,总有Tnm,求m的取值范围.18(本小题满分12分)(理)已知数列an是首项为q、公比为q的等比数列(其中q>
9、;0且q1),设(其中nN*).(1)当q=2时,求数列bn的前n项和为Sn; (2)在(1)的条件下,求的值; (3)当时,在数列bn中,是否存在最小的自然数n,使得对任意的m>n(mN*),都有bm>bn?证明你的结论.(文)数列an的通项公式是an =(其中nN*),前n项和为Sn.(1)化简数列an的通项公式an;(2)求证:19(本小题满分12分)医学上为了确定某种传染病在传播过程病毒细胞的生长规律及其预防方法,通常将这种病毒细胞m个注入一只小白鼠的体内进行试验.在试验过程中,将病毒细胞的数量(个)与时间(h)的关系记录如下表:时间(h)1234567病毒细胞总数(个)m
10、2m4m8m16m32m64m 已知该种病毒细胞在小白鼠体内的数量超过m×106个时,小白鼠将死亡,但有一种药物对杀死此种病毒有一定的效果,在最初使用此药物的几天内,每次用药可杀死其体内该病毒细胞的98%. (1)为了使小白鼠在试验过程中不死亡,第一次最迟应在何时注射该种药物? (2)第二次最迟应在何时注射该种药物,才能维持小白鼠的生命?(答案精确到小时,参考数据:lg 2=0.301 0)20(本小题满分12分) 已知函数f (x)=x+1,点(nN*)在y = f -1(x)上,且a1=a2=1. (1)求数列an的通项公式; (2)设,若Sn>m恒成立,求常数m的取值范围
11、.21(本小题满分12分) 已知数列an满足:a1=2,a2=3,2an+1=3an-an-1(n2).(1)求数列an的通项公式an;(2)求使不等式成立的所有正整数m、n的值.22(本小题满分12分) 已知点P1、P2、P3、Pn、顺次为曲线xy=(x>0)上的点(如图所示),点Q1、Q2、Q3、Qn、顺次为x轴上的点,且OP1Q1、OP2Q2、Qn-1PnQn、均为等边三角形. 记点Qn(cn,0),Pn(an,bn) (其中nN*). (1)求数列cn(nN*)的通项公式; (2)(理)求数列an(nN* )的通项公式及的值; (文)求数列an(nN* )的通项公式. (3)(理
12、)求证:(其中nN* ).(文)求证:(其中nN* ).参考答案1A 由已知得an+1-an=,an=14+(n-1)()=,anan+2=·<0,(n-20)(n-22)<0,20<n<22,因此n=21,选A.2B 由题意得an=,由5<ak<8得 5<-10+2k<8,<k<9,又kN,所以k=8,选B.3(理)C 由题意得an>0,当n<2006时,>1,an+1> an且a2007=a2006;当n2007时,<1,an+1< an. 综上所述,数列an的最大项是a2007=a2
13、006. (文)B an+1- an = -(n+1)2 +(n+1)+n2-n=-2n-1<0得<2n+1,其中nN*,因此<3.4C 由x2-x<nx得0<x<n+1,nN*,因此an=n,Sn=,选C.5C 当n是奇数时,由an<bn得a<2-,a<1;当n是偶数时,由an<bn得-a<2+,-a2,a-2,因此常数a的取值范围是.6B 设数列an的公差是d,由已知得a11>-a10,a11+a10>0,2a1+19d>0,2a1>-19d.令Sn=na1+d=n·>0即2a1+(n
14、-1)d>0,而2a1+(n-1)d>-19d+(n-1)d=(n-20)d,需(n-20)d0,又d>0,因此n20,选B.7(理)由题意得(1-q2)S=(1-q2)·=a(1+q)=q, a=1-,又0<|q|<1,0<1+q<2且1+q1,a<且a0,选C. (文)C 由题意得该数列有1+3+(2n-1)=n2项的和是n,因此其前101项和开始大于10,选C.8B 由an=-n2+12n-32=-n(n-4)(n-8)>0得4<n<8,即在数列an中,前三项以及从第9项起后的各项均为负且a4=a8=0,因此Sn
15、-Sm=am+1+am+2+an的最大值是a5+a6+a7=3+4+3=10.9B 由Sp=ap得a1+a2+ap-1=,a1+p-1=0. 又a1=2008>0,因此ap-1<0,数列an的公差小于零. 当n>p时,Sn-1=a1+a2+an-1<Sp-1=0,Sn=Sn-1+an< Sp-1+an=an,即an>Sn.10B 设数列an的公差是d,则,且a1,d=-1且a1=2,an=2-(n-1)=3-n<-2006,n>2009,因此使an<-2006成立的最小正整数n=2010,选B.11C 由题意得当a1=0时,0p=<;
16、当a1=2时,p,即1>p.因此结合各选项知选C.12A 设一月份投入的建设资金与一月份的利润均为a,每月增加投入的百分率为r,则各月的利润依次组成一个数列an,其中an=na(1n12,nN*),各月的建设资金依次组成一个数列bn,其中bn=a(1+r)n-1(1n12,nN*),由于a1=b1,a12=b12,结合函数y=ax与y=a(z1+r)x-1的图象可知a2>b2,a3>b3,a11>b11,因此M>N.13(理)-1 由题意得a1+a9,3-1<3a=<1=30,-1<a<0,k=-1. (文)10 由题意得a1+a9>
17、14(理)20 由题意得,经过n次这样的折叠后其厚度是0.1×2n mm,令0.1×2n>100×103=105得,2n>106,n>,因此经过20次这样的折叠后其厚度开始大于100 m.(文)20 当此设备使用了n年时,此设备的平均费用是500·=20500,当且仅当=n,即n=20时取得等号.15 由已知得2b2=a2+c2,cosB=,因此sinB=.16(理)10 依题意得(n2),又bn+cn=1,则+cn=1,=1,由b1=c1,b1+c1=1得b1=c1=,则cn=,bn=,所以an=bn-bn-1=n(n+1),因此数列
18、中最接近108的项是第10项. (文)x=y 由等比数列的性质知(S20-S10)2=S10(S30-S20),即S10S30-S10S20,也即=S10(S20+S30),则x=y.17(1)设公差为d(d>0),则有=a1a4,(2+d)2=2(2+3d),由此解得d=0(舍去)或d=2,因此an=2+2(n-1)=2n; (2)由(1)得n(n+1), ,即n>2(nN* );=1,T2=T3=,又n>2时,Tn>Tn+1,各项中数值最大值为,对一切正整数n,总有Tnm恒成立,因此m. 命题动向 近年来的全国各地的高考试题中,有关等差、等比数列的定义、通项公式以及
19、前n项和公式的基本考查常有出现,这就要求考生对于这方面的知识比较熟悉,做到灵活地使用,同时注意与其他知识间的联系.18(理)(1)当q=2时,an=2n,bn=2n·log22n=n·2n,Sn=1·21+2·22+n·2n , 2Sn=1·22+2·23+(n-1)·2n+n·2n+1 , 由-得,-Sn=21+22+2n-n·2n+1=-n·2n+1=2n+1- n·2n+1+2,; (2)由(1)得; (3)当q=时,存在最小的自然数n=2008,使得对任意的m>
20、n(mN*),都有bm>bn.证明如下: 当q=且n2008时,an=,bn=n·log2,bn+1-bn=(n+1)log2-n·log2=··log2>0,由于1>>0,log2<0,-<0,因此bn+1-bn>0,即bn+1>bn,数列bn从第2008项开始各项随着n的增大而增大,故存在最小的自然数n=2008,使得对任意的m>n(mN*),都有bm>bn.(文)(1)由an= ,an=,即an= ,由+得2an=·2n,则an=n·2n-1;(2)由an=n·
21、;2n-1得Sn=1·20+2·21+3·22+n·2n-1 ,2Sn=1·21+2·22+3·23+(n-1)2n-1+n·2n ,由-得-Sn=1+21+22+2n-1-n·2n=·2n,Sn=(n-1)·2n+1,因此. 规律总结 有关数列前n项和的求解问题,具体问题应当进行具体分析. 当一个数列的各项是由一个等差数列和一个等比数列的对应项之积所构成,则此时可采用错位相减法. 把其前n项和的表示式两边同时乘以公比,然后两式相减,从而求解. 当一个数列an满足:a1+an=a2+a
22、n-1=时,可考虑采用倒序相加法来求其前n项和.19.(1)设第一次最迟在第n(h)时注射药物 由病毒细胞的生长规律可知,第n(h)时病毒细胞的数量是2n-1·m个.因此为了使小白鼠在试验过程中不死亡,应有2n-1·mm×106,即2n-1106,(n-1)lg26,n1+20.9,第一次最迟应在第20(h)时注射该种药物;(2)第20(h)时的小白鼠体内的病毒细胞数是210·m(1-98%)=个.设第一次注射药物后的第t小时必须注射药物,则·2tm×106,即2t+20108,(t+20)lg28,t-206.57,因此第二次注射药
23、物的时间最迟应在自开始注射该种药物后的第6(h),才能维持白鼠的生命. 规律总结 解决实际应用问题的一般步骤:(1)读题:反复读题,领悟题目的数学本质,弄清题中出现的每个量及其数学含义;(2)建模:恰当地设出关键量,根据题意进行数学化设计,建立目标函数(函数模型);(3)求解:用相关的函数知识进行数学上的计算;(4)反馈:把计算获得的结果返回到实际问题中,写出答案.20(1)f (x)=x+1的反函数是f -1(x)=x-1, 点(n+1,)(nN*)在反函数图象上,=n,而a1=1,·=1·2·3(n-1),an=(n-1)!;(2)Sn= 又Sn随n的增大而增
24、大,SnS1=,由Sn>m得,m<,即常数m的取值范围是(-,).思路点拨 本题考查了数列的通项公式的求法. 当已知数列an的递推公式是= f (n)的形式时,通常采用累乘的方法求解.21(1)2an+1=3an-an-1(n2),得2(an+1-an)=an-an-1(n2), (n2),因此数列an-an-1是以a2-a1=1,为首项,为公比的等比数列, an-an-1=, 当n2时,an=(an-an-1)+(an-1-an-2)+(a2-a1)+a1 ,又a1=2=4-, 因此an=4-. (2)由不等式,得<, , 即,所以2<(4-m)·2n<8,2n为正偶数,4-m为整数,(4-m)·2n=4,或(4-m)·2n=6,或,或,或.解得,或或或 经检验使不等式成立的所有正整数m、n的值为(m,n)=(1,1)或(2,1)或(3,2). 方法探究 求递推公式形如an+2=pan+qan+1(其中p,q是常数)的数列的通项公式. 已知数列an满足:a1=a,a2=b,且an+2=pan+qan+1(其中p,q是常数),求an. 一般地,设an+2-x1an+1=x2(an+1-x1an),即an+2=(x1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论