




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、一、 填空题1.若,则 , .2.设连续可微且,若向量满足 ,则它是在处的一个下降方向。3.向量关于3阶单位方阵的所有线性无关的共轭向量有 .4. 设二次可微,则在处的牛顿方向为 . 5.举出一个具有二次终止性的无约束二次规划算法: .6.以下约束优化问题:的K-K-T条件为: .7.以下约束优化问题:的外点罚函数为(取罚参数为) .二、 证明题(7分+8分)1.设和都是线性函数,证明下面的约束问题:是凸规划问题。2.设连续可微,考察如下的约束条件问题:设是问题的解,求证:是在处的一个可行方向。三、 计算题(每小题12分)1.取初始点.采用精确线性搜索的最速下降法求解下面的无约束优化问题(迭代
2、2步):2.采用精确搜索的BFGS算法求解下面的无约束问题:3.用有效集法求解下面的二次规划问题:4.用可行方向算法(Zoutendijk算法或Frank Wolfe算法)求解下面的问题(初值设为,计算到即可):参考答案一、填空题1. 2. 3. ,(答案不唯一)。4. 5. 牛顿法、修正牛顿法等(写出一个即可)6. 7. 二、证明题1.证明:要证凸规划,即要证明目标函数是凸函数且可行域是凸集。一方面,由于二次连续可微,正定,根据凸函数等价条件可知目标函数是凸函数。另一方面,约束条件均为线性函数,若任意可行域,则故,从而可行域是凸集。2.证明:要证是在处的一个可行方向,即证当,时,使得,当时,故;当时,故.因此,是在处的一个可行方向。三、 计算题1.解:令 得;第一次迭代: , ,令,求得;第二次迭代:,令,求得,故,由于,故为最优解。0122.解:取 第一步迭代:,令,求得;第二步迭代:,令,求得。故,由于,故为最优解。01/21223. 解:取初始可行点求解等式约束子问题 得解和相应的Lagrange乘子 转入第二次迭代。求解等式约束子问题 得解 令 转入第三次迭代。求解等式约束子问题 得解和相应的Lagrange乘子 由于,故得所求二次规划问题的最优解为 ,相应的Lagrange乘子为 4.解:计算梯度得当时,.是下面线性规划问题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年临床路径季度总结模版
- 总工办年终总结模版
- 2025年的监理员试用期工作总结模版
- 拼多多运营讲解
- 班主任个人工作心得体会模版
- 2025届湖北省荆门市沙洋县七年级数学第二学期期末检测试题含解析
- 办公室行政部门个人工作总结模版
- 快速康复护理临床实践要点
- 脊柱骨科护理要点与规范
- 苹果企业管理理念
- SWAT培训课件教学课件
- 电缆隧道施工组织设计
- AI在财务管理中的应用策略研究
- 自控仪表检修方案
- 2025青海三支一扶真题
- 2025鄂尔多斯生态环境职业学院辅导员考试题库
- 2024年呼和浩特市消防救援支队招聘政府专职消防员笔试真题
- 2025年安徽省C20教育联盟中考“功夫”卷(二)物理
- 2024年山东烟台中考满分作文《连起来》6
- 2019泸州中考化学试题及答案
- 五人制足球规则(教学)
评论
0/150
提交评论