分式全章复习与巩固(基础)导学案+习题【含答案】_第1页
分式全章复习与巩固(基础)导学案+习题【含答案】_第2页
分式全章复习与巩固(基础)导学案+习题【含答案】_第3页
分式全章复习与巩固(基础)导学案+习题【含答案】_第4页
分式全章复习与巩固(基础)导学案+习题【含答案】_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上分式全章复习与巩固(基础)【学习目标】1. 理解分式的概念,能求出使分式有意义、分式无意义、分式值为0的条件. 2了解分式的基本性质,掌握分式的约分和通分法则 3掌握分式的四则运算4结合分式的运算,将指数的讨论范围从正整数扩大到全体整数,构建和发展相互联系的 知识体系5结合分析和解决实际问题,讨论可以化为一元一次方程的分式方程,掌握这种方程的解法,体会解方程中的化归思想【知识网络】【要点梳理】要点一、分式的有关概念及性质1分式一般地,如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式.其中A叫做分子,B叫做分母.要点诠释:分式中的分母表示除数,由于除数不能为0

2、,所以分式的分母不能为0,即当B0时,分式才有意义.2.分式的基本性质(M为不等于0的整式).3最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.要点二、分式的运算1约分利用分式的基本性质,把一个分式的分子和分母的公因式约去,不改变分式的值,这样的分式变形叫做分式的约分.2通分利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把异分母的分式化为同分母的分式,这样的分式变形叫做分式的通分3基本运算法则 分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算 ;同分母的分式相加减,分母不变,把分子相加减. ;异分母的分式相加减,先通分

3、,变为同分母的分式,再加减. (2)乘法运算 ,其中是整式,.两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算 ,其中是整式,.两个分式相除,把除式的分子和分母颠倒位置后,与被除式相乘.(4)乘方运算 分式的乘方,把分子、分母分别乘方.4零指数.5.负整数指数6.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.要点三、分式方程1分式方程的概念分母中含有未知数的方程叫做分式方程2分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程 3分式方程的增根问题增根的产生:分式方程本身隐含着分母不为0的条件,当

4、把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根增根.要点诠释:因为解分式方程可能出现增根,所以解分式方程必须验根验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.要点四、分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.【典型例题】类型一、分式及其基本性质1、在中,分式的个数是( )A.2 B

5、.3 C.4 D.5【答案】C;【解析】是分式.【总结升华】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式 2、当为何值时,分式的值为0?【思路点拨】先求出使分子为0的字母的值,再检验这个值是否使分母的值等于0,当它使分母的值不等于0时,这个值就是要求的字母的值【答案与解析】解: 要使分式的值为0,必须满足分子等于0且分母不等于0 由题意,得 解得 当时,分式的值为0【总结升华】分式的值为0的条件是:分子为0,且分母不为0,即只有在分式有意义的前提下,才能考虑分式值的情况. 举一反三:【变式】(1)若分式的值等于零,则_;(2)当_时,分式没有意义【答案】

6、(1)由0,得. 当2时20,所以2; (2)当,即1时,分式没有意义类型二、分式运算3、计算:【答案与解析】解:【总结升华】本题有两处易错:一是不按运算顺序运算,把和先约分;二是将和约分后的结果错认为是1因此正确掌握运算顺序与符号法则是解题的关键举一反三:【变式】计算:(1);(2);(3)【答案】解:(1) ;(2);(3) 4、计算:(1); (2);(3);(4)【思路点拨】(1)题和(2)题只有乘除运算,按幂的乘法和除法法则进行计算;(3)题中出现了分式,可先将每一个分式转化为整数指数幂,然后再用法则计算;(4)题中出现了整数幂的乘法、除法、乘方计算;先算乘方,再算乘除【答案与解析】

7、解:(1)原式;(2)原式;(3)原式 ;(4)原式 【总结升华】(1)整数指数幂的运算结果一般要用正整数指数幂来表示如:(4)题中的结果得到后,还要化为(2)进行混合运算时特别要注意运算顺序类型三、分式方程的解法【高清课堂 分式全章复习与巩固 例6(1)】5、解方程【答案与解析】解: 方程两边同乘以,得 检验: 当时,最简公分母0, 是原方程的解.【总结升华】分式方程一定要记得检验.举一反三:【变式】,【答案】 解: 方程两边同乘以,得 检验:当时,最简公分母,是原方程的解类型四、分式方程的应用6、某质检部门分别抽取甲、乙两厂相同数量的产品进行质量检查,测得甲厂有合格的产品48件,乙厂有合格

8、的产品45件,甲厂的合格率比乙厂的合格率高5%,问甲厂的合格率是多少?【思路点拨】本题可间接设出甲、乙两厂分别抽取的产品件数,利用“甲厂的合格率比乙厂的合格率高5%列出等式.【答案与解析】解:设质检部门抽取了件进行检测,则:解方程得:60 甲厂的合格率是:答:甲厂的合格率是80%【总结升华】本题若直接设未知数,解题过程非常繁琐,间接设未知数较方便举一反三:【变式】小明家、王老师家、学校在同一条路上,并且小明上学要路过王老师家,小明到王老师家的路程为3 km,王老师家到学校的路程为0.5 km,由于小明的父母战斗在抗震救灾第一线,为了使他能按时到校、王老师每天骑自行车接小明上学已知王老师骑自行车

9、的速度是他步行速度的3倍,每天比平时步行上班多用了20 min,王老师步行的速度和骑自行车的速度各是多少?【答案】解:设王老师步行的速度为 km/h,则他骑自行车的速度为3 km/h根据题意得:解得:经检验是原方程的根且符合题意当时,答:王老师步行的速度为5km/h,他骑自行车的速度为15km/h【巩固练习】一.选择题1下列变形从左到右一定正确的是( )A.B.C.D.2.把分式中的都扩大3倍,则分式的值( )A.扩大3倍B.扩大6倍C.缩小为原来的D.不变3下列各式中,正确的是( )A.B.C.D.4.式子的值为0,那么的值是( )A2B2C±2D不存在5下列计算中正确的是( )A

10、.B.C.D.6.下列分式中,最简分式是( )A.B.C.D.7将分式方程化为整式方程时,方程两边应同乘( )ABCD8.方程的解是( )A0B2C3D无解二.填空题9_,_10当_时,分式有意义11当_时,分式的值为正12_13._14.写出下列分式中的未知的分子或分母:(1);(2);(3)15分式方程若要化为整式方程,在方程两边同乘的最简公分母是_16方程的解是_三.解答题17.计算;(2)18.已知,求19. 已知,求的值20.在“情系海啸”捐款活动中,某同学对甲、乙两班捐款情况进行统计,得到如下三条信息:信息一:甲班共捐款300元,乙班共捐款232元信息二:乙班平均每人捐款钱数是甲班平均每人捐款钱数的信息三:甲班比乙班多2人请根据以上三条信息,求出甲班平均每人捐款多少元【答案与解析】一.选择题1. 【答案】C ;2. 【答案】D; 【解析】.3. 【答案】A; 【解析】.4. 【答案】B;【解析】由题意且,解得.5. 【答案】D; 【解析】.6. 【答案】D;7. 【答案】D; 【解析】原方程的最简公分母为.8. 【答案】D; 【解析】解分式方程得,经检验,为原方程的增根.二.填空题9. 【答案】; 【解析】.10.【答案】;11.【答案】; 【解析】要使分式的值为正,需,解得.12.【答案】; 【解析】.13.【答案】; 【解析】.14.【答案】(1) (2) (3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论