



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上题目一:作一条线段等于已知线段。已知:如图,线段a .求作:线段AB,使AB = a .作法:(1) 作射线AP;(2) 在射线AP上截取AB=a .则线段AB就是所求作的图形。题目二:作已知线段的中点。已知:如图,线段MN.求作:点O,使MO=NO(即O是MN的中点).作法:()分别以M、N为圆心,大于的相同线段为半径画弧,两弧相交于P,Q;()连接PQ交MN于O则点O就是所求作的的中点。(试问:PQ与有何关系?)(怎样作线段的垂直平分线?)题目三:作已知角的角平分线。已知:如图,AOB,求作:射线OP, 使AOPBOP(即OP平分AOB)。作法:(1)以O为圆心,
2、任意长度为半径画弧,分别交OA,OB于M,N;(2)分别以M、为圆心,大于的相同线段为半径画弧,两弧交AOB内于;(3) 作射线OP。则射线OP就是AOB的角平分线。题目四:作一个角等于已知角。(请自己写出“已知”“求作”并作出图形,不写作法)题目五:已知三边作三角形。已知:如图,线段a,b,c.求作:ABC,使AB = c,AC = b,BC = a.作法:(1) 作线段AB = c;(2) 以A为圆心b为半径作弧,以B为圆心a为半径作弧与前弧相交于C;(3) 连接AC,BC。则ABC就是所求作的三角形。题目六:已知两边及夹角作三角形。已知:如图,线段m,n, .求作:ABC,使A=,AB=
3、m,AC=n.作法:(1) 作A=;(2) 在AB上截取AB=m ,AC=n;(3) 连接BC。则ABC就是所求作的三角形。题目七:已知两角及夹边作三角形。已知:如图,线段m .求作:ABC,使A=,B=,AB=m.作法:(1) 作线段AB=m;(2) 在AB的同旁作A=,作B=,A与B的另一边相交于C。则ABC就是所求作的图形(三角形)。三角形全等证明循序渐进训练(可改变条件练习)第一类:SSS1. 如图所示,已知:AB=DE,BC=EF,AC=DF. ABC与DEF全等吗?请说明理由.2. 如图所示,已知:AC=BD,BC=AD. ABC与BAD全等吗?请说明理由.3. 如图所示,已知:A
4、B=DE,BC=EF,AF=DC. ABC与DEF全等吗?请说明理由.(请分别说出以上全等三角形的对应边,对应角.)第二类:SAS1. 如图所示,已知:AB=DE,BC=EF, B=E. ABC与DEF全等吗?请说明理由.2.如图所示,已知:AB=AD,AC=AE. ABC与ADE全等吗?请说明理由.4. 如图所示,已知:AO=CO,BO=DO,BOC=AOD. ABO与CDO全等吗?请说明理由.第三类:ASA与AAS1. 如图所示,已知:O是AC的中点, ABDC.ABO与CDO全等吗?请用ASA说明理由2. 如上图所示,已知:O是AC的中点, ABDC.ABO与CDO全等吗?请用AAS说明理由第四类:HL如图所示,已知:MOAB,MA=MB. MAO与MBO全等吗?O是AB的中点吗?请说明理由.综合练习1. 如图所示,已知:O是AC,BD的中点.AB与DC平行且相
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网络直播平台流量分成与电商平台合作合同
- 深海地质勘探专利许可与技术升级改造协议
- 电商企业进口退税担保及税务风险管理合同
- 古钱币鉴定设备租赁与品牌授权与售后服务协议
- 大数据技术入股合作框架协议
- 大数据股权收益权转让与数据分析合作协议
- 美团外卖平台餐饮商家线上订单处理协议
- 离婚协议在线电子签署及履行监督协议
- 工业自动化生产线传感器设备采购、安装及维护服务合同
- 介入治疗和护理
- 2024年广东佛山市三水海江昇平建设工程有限公司招聘笔试参考题库附带答案详解
- 《中医常用护理技术基础》课件-一般护理-第五节用药护理
- T-CI 179-2023 泥石流泥位流速毫米波雷达监测技术规程
- 地震逃生与自救培训课件
- 绿化及景观工程施工组织设计
- 劳模人物王进喜 (模板)
- 急性肾衰竭血液透析护理查房
- 完整投标书字体与格式要求
- 2023年四川省眉山市殡仪馆招聘编外自聘临时人员7人考前自测高频考点模拟试题(共500题)含答案详解
- 皮肤病患者的心理护理
- 物业公司培训工作作业指导书
评论
0/150
提交评论