柔性机械臂逆动力学问题的分析和求解_第1页
柔性机械臂逆动力学问题的分析和求解_第2页
柔性机械臂逆动力学问题的分析和求解_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、柔性机械臂逆动力学问题的分析和求解    摘要:采用割线坐标系对机械臂的运动进行了描述,并分快变(振动)和慢变两方面进行逆动力学问题的分析与求解。在对快变部分逆动力学性质的分析中发现,快变部分精确的逆动力学解是发散的。在进行柔性机械臂逆动力学求解时,应在慢变的意义上进行。文中给出了一种去掉系统快变部分的简单方法,并进行了逆动力学求解。数值仿真结果表明,该处理方法是合理的。关键词:柔性机械臂;动力学;逆动力学;振动;大范围运动the Analysis and Solution for Inverse Dynamic Problems of Flexible

2、 Arms  Abstracet:The paper concentrates on the analysis and solution for inverse problems of flexible arms. The secant coordinate system is introduced to describe the location of the two-link arm. The fast (vibration) part and the slow part are analyzed for the inverse problems. The solutions f

3、or the fast part are found emanative through the analysis. So, the solution for the flexible arms should be carried out while only the slow part is included. A sample method is given to get rid of the fast part and get the solutions for the inverse problems. Numerical results show that this method i

4、s correct.Key words:flexible arm;dynamic;inverse dynamic;vibration;movement with large range     双连杆柔性机械臂是柔性系统中最为典型的例子之一,在实践中,对其端点的运动实现精确的控制的最重要因素是控制算法的计算速度,复杂的控制算法难以实现。而逆动力学建模和控制是紧密相关的,通过逆动力学方法,得到一个比较精确的驱动力矩作为前馈,再施以适当的控制算法,以实现对机械臂的高速、高精度控制,则是一种具有实效的方法。    关于柔性臂控制的逆动力学方

5、法的研究报道尚不多见,其中文献1-5对动力学方程解耦,即把动力学方程近似分解成一些相对简单的系统,从而得到逆动力学的表达式。Matsuno6通过对采用切线坐标系的动力学模型进行简化,得到了一种实时的逆动力学方法。Gofron等应用了驱动约束法7,把期望运动处理成非定常约束。Bayo在频域内进行了逆动力学求解8,9。Asada等提出了一种迭代求解的方法10。    在逆动力求解中常常会遇到求得的力矩不准,力矩振荡很大,求解烦琐等问题。因此,讨论逆动力学求解的特点和性质是非常重要的,并有助于采用合理的方式得到比较好的前馈力矩。1 动力学和逆动力学模型 

6、60;  一般情况下,柔性机械臂的两根连杆横向弹性变形(弯曲)较小,则忽略机械臂的径向变形;假定关节及臂端负载均为集中质量,则忽略其大小。同时,暂不考虑电机转子的转动惯量和电机的阻尼。     图1 双连杆柔性臂Fig.1 Two-link flexible arm 图1是一双连杆柔性机械臂,两臂间关节电机质量为 ,上臂端部集中质量为 ,两连杆质量和抗弯刚度分别为     和 , 和 ,两连杆的长度分别为 和 , 和 为两关节电机提供的力矩。     连杆变形很小,

7、对每根连杆建立一个运动坐标系,使得连杆在其中的相对运动很小。机械臂的整体运动则可由这两个动坐标系的方位角来描述。于是,在动力学模型中将有两类变量,一类是幅值很小但变化迅速的弹性坐标,另一类是变化范围较大的方位角。本文采用端点连线坐标系,即将连杆两端点的连线作为动坐标系的x轴(见图1)。描述整体运动的是两个角度     和 ,而连杆相对于动坐标系的运动则可视为简支梁的振动。这样,动力学模型刚度阵的弹性坐标互相不耦合,臂端的位置可由 和 确定,其期望运动形式(或数值解):        &

8、#160;                          (1) 如采用其他形式的动坐标系,两杆的弹性坐标将耦合在一起,而且在逆动力学求解时,将不得不处理微分方程与代数方程组合的方程组。     对每个机械臂取两阶模态坐标来描述,应用拉格朗日方法得到动力学方程:     &#

9、160;                                 (2) 式中。      为6×6质量阵; 为速度的二次项; 为6×6刚度阵; 为重力的广义力向量; 为驱动力矩的广义力向量; ,其中 和 、 和

10、     分别是两个机械臂的一阶和二阶弹性坐标。     柔性臂系统的逆动力学问题,是指在已知期望末端操作器运动轨迹的情况下,结合逆运动学与动力学方程对关节力矩进行求解。如果直接进行逆动力学求解,即把式(1)代入动力学方程式(2)中,对方程中的弹性坐标和力矩进行求解,一般情况下,其数值解将很快发散。     表达系统运动状态的坐标可以看成有两部分组成:大范围的相对缓慢的运动(慢变)部分和小范围的振动(快变)部分。本文试图将这两部分分离,分别讨论它们的逆动力学特性,并以此来分析整体系统的逆动力学问题。 2 快变部分的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论