




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、浙教版七年级上数学复习题型归纳第一章 从自然数到有理数知识点:1.自然数:注意(1)0是最小的自然数,它表示没有,不要遗漏。(2)表示不同作用的数有不同的性质,表示计数和测量的数可以进行数的运算,而表示标号或排序的数有时有指代作用,即对事物起区别作用,一般不能进行计算,这也是区别数的表示作用的重要性。剖析用于计数和测量的数往往与量词相连,而用于标号和排序的数往往与顺序有关,在阅读是应特别注意体会这一点。 例:世界上最长的跨海大桥杭州湾大桥于2003年6月8日奠基,这座设计日通车量为8万辆,全长36千米的6车道公路斜拉桥,是中国大陆的第一座跨海大桥,计划在5年后建成通车。 你在这段文字中看到了哪
2、些数?它们都属于哪一类数? 属于计数如8万辆、5年后、6车道 表示测量结果如全长36千米 表示标号和排序如2003年6月8日、第一座等下列语句中用到的数,哪些属于计数?哪些表示测量结果?哪些属于标号和排序?(1)2002年全国共有高等学校2003所。 (标号和排序 计数)(2)小明哥哥乘1425次列车从北京到天津,然后乘15路公交车到了小明家。(标号和排序 标号和排序)(3)香港特别行政区的中国银行大厦高368米,地上70层,至1993年为止是世界上第5高楼。 (测量结果,计数,标号和排序,标号和排序)一、有理数的概念:1)正整数、零和负整数统称为整数; 2)正分数、负分数统称为分数; 3)整
3、数和分数统称为有理数。(0既不是正数,也不是负数)随堂测试一:1、把下列各数分别填在表示它所属的括号里:-5.3 ,+31 , ,0 , -7 , ,2005 , -1.39. (1)正有理数: (2)负有理数: (3)整数: (4)分数: (5)非负有理数: 2、请你任意写出一个自然数 ;一个负分数 二、1、数轴的概念:规定了原点、单位长度和正方向的直线叫做数轴。 2、相反数的概念:若两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。 注意:零的相反数是零。 3、在数轴上,表示为相反数(0除外)的两个点,位于原点的两侧,并且到原点的距离相等。 (例如:-10
4、0和100的点分别位于远点的左侧和右侧,到原点的距离都是100个长度单位。)随堂测试二:1、点A,B,C,D,E在数轴上的位置如图所示,请你把各点所表示的数填入相应的括号内051234-1-2-3ABCD····· A、( ) B、( ) C、( ) D、( ) E、( )2、画一条数轴,在数轴上表示2,3,-4.5以及它们的相反数。3、如果一个数与它的相反数相等,那么这个数是 。4、数轴上表示一个数的点在“-2.5”的右边,并且距离“-2.5”4个单位长度,求这个数。三、1、绝对值的概念:我们把一个数在数轴上对应的点到原点的距离叫做这个数的绝
5、对值。 (例如:数轴上表示-5的点到原点的距离是5,所以-5的绝对值是5。记作丨-5丨=5 。)2、一般地,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零;互为相反数的两个数的绝对值相等。随堂测试三:1、如果说一个数与它的绝对值相等,那么这个数是 2、任何数的绝对值都是( ) A正数 B负数 C非负数 D非正数3、绝对值小于2的整数有_。绝对值不大于3的负整数有_。4、大于3.142的负整数有个;小于2.9的正整数有 个;大于9.5的负整数有 个.5、(1)若a3,则a _ (2)某同学学习编程以后,编了一个关于绝对值的程序,当输入一个数值后,屏幕输出的结果总比该数的绝
6、对值小1,某同学输入-7后,把输出的结果再次输入,则最后屏幕输出的结果是多少? 6、 计算:(1) (2) (3) (4)四、一般地,在数轴上表示的两个数,右边的数总比左边的数大;正数都大于零,负数都小于零,正数大于负数。例题:1.在数轴上表示下列各对数,并比较它们的大小: (1)2_7; (2)-6_-1; (3)-6_-36; (4)-0.5_-1.5 2.求上述各对数的绝对值,比比较大小,问上面各对数的大小与它们的绝对值的大小有什么关系?结论:两个正数比较大小,绝对值达的数大;两个负数比较大小,绝对值大的数反而小。随堂测试四:1、比较下列各组数的大小: (1)-4_+3 (2)0_-2.
7、4 (3)-0.3_- (4)_2、在数轴上,表示5,0,0.125,(),的点中,在原点右边的点有( )(A) 4个; (B)3个; (C)2个; (D)1个3、大于-3.5且小于2的整数是 。4、画一条数轴,在数轴上表示1,-2.5,-4以及它们的相反数,并比较这些数的大小,按从小到大的顺序用“<”边接起来第一单元检测练习一、精心选一选1. 如果高出海平面20米,记作+20米,那么-30米表示 ( )(A)不足30米; (B)低于海平面30米; (C)高出海平面30米; (D)低于海平面20米2.仔细思考以下各对量:胜二局与负三局; 气温上升30 C与气温下降30 C; 盈利5万元与
8、支出5万元;增加10%与减少20%。其中具有相反意义的量有 ( )A)1 对 B2 对 (C)3 对 (D)4对3.下列说法错误的是 ( ) (A)整数和分数统称有理数; (B)正分数和负分数统称分数; (C)正数和负数统称有理数; (D)正整数、负整数和零统称整数。4. 零是:A.最小的有理数 B.最小的正整数 C.最小的自然数 D.最小的整数 ( ) 5.下列数轴的画法中,正确的是 ( )6.下列各对数中,互为相反数的是 ( )(A)和0.2 (B)和 (C)1.75和 (D)和27.大于2.6而小于3的整数共有 ( ) A. 7个 B. 5个 C. 6个 D. 4个 8.下列说法正确的是
9、 A.若两数的绝对值相等,则这两数必相等 B.若两数不相等,则这两数的绝对值一定不相等 C.若两数相等,则这两数的绝对值相等 D.两数比较大小,绝对值大的数大9.冬季三个城市的最高气温分别是-10°C,1°C,-7°C,把它们从高到低排列是( ) A、-10°C, -7°C,1°C B、-7°C, -10°C,1°C C、1°C, -7°C, -10°C D、1°C,-10°C,-7°C10.一个数的相反数是最大的负整数,则这个数是 ( )(A)
10、1 (B)1 (C)0 (D)±111.数轴上到数2所表示的点的距离为4的点所表示的数是 ( )(A)6 (B)6 (C)2 (D)6或212.一个数的绝对值等于这个数本身,这个数是 ( ) (A)0 (B)正数 (C)非正数 (D)非负数二、细心填一填13.若上升15米记作+15米,则8米表示 _ 14.写出一个负分数: 。15.一艘潜艇正在水下50米处执行任务,距它正上方30米处有一条鲨鱼正好游过,这条鲨鱼所处位置的高度为_.16.规定了_、_、_的直线叫数轴.17.用“<”号或“>”号填空: 9 11。18.抽查四个零件的长度,超过为正,不足为负:(1)0.3;(2
11、)0.2;(3)0.4;(4)0.05则其中误差最大 的是 。(填序号)19.一个点从数轴上的原点出发,先向右移动3个单位长度,再向左移动8个单位长度到达P点,那么P点所表示的数是_.20. 比2.99小的最大整数是_21.绝对值大于3而不大于6的整数分别是 _ 。22.在数轴上,绝对值小于3并且离2两个单位长度的点所表示的数是_.三、认真做一做23. 24. 25.把下列各数的序号填在相应的数集内:1 - +3.2 0 -5 +108 -6.5 -6. (1)正整数集 (2)正分数集 (3)负分数集 (4)有理数集 26将下列各数在数轴上表示出来 4.5, 5, 0, 3, , 1。27.出
12、租车司机小李某天下午营运全是在东西向的人民大道上进行的如果规定向东为正,他这天下午行车里程(单位:千米)如下: +15, -2, +5, -1, +10, -3, -2, +12, +4, -5, +6 (1)将最后一名乘客送到目的地时,小李一共行了多少千米?(2)若汽车耗油量为02升/千米,这天下午小李共耗油多少升?努力试一试1.式子5能取得的最大值是 ,这时= 。2.观察下面一列数,探求其规律: (1)请问第7个,第8个,第9个数分别是 , , , (2)第2012个数是 ?如果这列数无限排列下去,与哪个数 越来越接近?3. 如图,图中数轴的单位长度为1。请回答下列问题:如果点A、B表示的
13、数是互为相反数,那么点C表示的数是_.如果点E、B表示的数是互为相反数,那么点D表示的数是_,图中表示的5个点中,点_表示的数的绝对值最小,是_.第二章 有理数的运算1用正负数表示相反意义的量2正数和负数 像+,+12,1.3,258等大于0的数(“+”通常不写)叫正数。 像-5,-2.8,-等在正数前面加“”(读负)的数叫负数。【注】0既不是正数也不是负数。例题:在知识竞赛中,如果+15表示加15分,那么扣20分表示 。习题:设向东行驶为正,则向东行驶30m记做 ,向西行驶20m记做 ,原地不动记做 ,5m表示向 行驶5m,+16m表示向 行驶16m.。作业:(1)收入2000元,表示 。
14、(2)如果下降8米记为8米,那么上升15米记为 。3有理数(1)整数:正整数、零和负整数统称为整数。分数:正分数和负分数统称为分数。有理数:整数和分数统称为有理数。(2)有理数分类1)按有理数的定义分类 2)按正负分类 正整数 正整数 整数 0 正有理数有理数 负整数 有理数 正分数 正分数 0 负整数 分数 负有理数 负分数 负分数例1 : 把填在相应的括号内。正有理数集合: 整数集合: 非负数集合: 负分数集合:练习:把下列各数填在适当的位置 正整数 分数作业:,负数有 个,正数有 个,整数有 个,正分数有 个,非负整数有 个。例2:下列说法正确的是 。(1) 一个数,如果不是正数,必定就
15、是负数 (2)正有理数是正整数和正分数的统称。(3)一个有理数不是分数就是正数。 (4)整数不是奇数就是偶数。 (5)0是最小的有理数。练习:下列说法正确的是:( )A 3.1415926 不是分数 B 正整数和负整数统称为整数。C 奇数是正数 D 有理数包括整数和分数作业:下列说法错误的是( )A. -0.6是分数 B.0不是正数也不是负数 C.0是自然数,不是整数 D.没有最小的有理数例3:找规律填空 (1)3,3,3,3,3,3, , , (2) , , , 第199个数分别是 。练习:(1)1,3,5,7,9,11, , , (2) , ,第100个数分别是 。4数轴(1)规定了原点、
16、正方向和单位长度的直线叫做数轴。例题:在数轴上画出表示下列的点 练习:写出数轴上A,B,C,D,E各点表示的数 (2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数例题: 写出大于4而不大于2的所有的整数,并在数轴上表示出来。习题:(1)若数轴上的点A向右移动2个单位长度后,又向左移动1个单位长度,此时正好对应8这个点,那么原来A点对应的数是 。 (2)数轴上与原点距离小于4个单位长度的整数点有 个,分别是 。(3)在数轴上,把表示3的点沿着数轴向负方向移动5个单位,则与此位置相对应的数是 。作业: 下列结论正确的有( )个: 规定了原点,正方向和单
17、位长度的直线叫数轴 最小的整数是0 正数,负数和零统称有理数 数轴上的点都表示有理数 A.0 B.1 C.2 D.3(3)在数轴上比较有理数的大小 1)在数轴上表示的两个数,右边的数总比左边的数大。 2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。 例题:在数轴上画出下列各点,它们分别表示:+3, 0, , 1,1.25并把它们用“”连接起来。习题:(1)下列说法错误的是( ) A.没有最大的正数,却有最大的负数 B.数轴上离原点越远,表示数越大 C.0大于一切非负数 D.在原点左边离原点越远,数就越小(2)写出两个比2大的负
18、有理数 。作业: 根据有理数a,b,c 在数轴上的位置,比较a,b,c,0的大小。ab0c5相反数 (1)只有符号不同的两个数称互为相反数,如5与5互为相反数。 (代数意义) (2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。(几何意义) (3)0的相反数是0。也只有0的相反数是它的本身。 (4)相反数是表示两个数的相互关系,不能单独存在。例题:7的相反是 。练习:(1)的相反数是 。(2)下列说法正确的是( )A 一个数比它的相反数小,那么这个数是正数。 B 符号相反的两个数互为相反数。C 互为相反数的两个数可能相等。 D
19、一个数的相反数不可能大于它本身。作业: 写出下列各数的相反数,并在数轴上表示出来。 (5)相反数的求法:数a的相反数是a。例题:(1)0.1与a互为相反数,那么a= 。 (2)a-1的相反数是 。练习: (1)若-x的相反数是-7.5,则x= 。 (2)如果m的相反数是最大的负整数,n的相反数是-2,那么m+n= 。作业:若a-1的相反数是-2,则a= 。(6)多重符号化简 多重符号化简的结果是由“”号的个数决定的。如果“”号是奇数个,则结果为负;如果是偶数个,则结果为正。可简写为“奇负偶正”。 例题:-(-3.5)= -(+8)= 练习: -(+5)的相反
20、数是 。 的相反数与a的相反数相等,则a= 。作业:-( )=-3 -( )=5.26绝对值 (1)在数轴上表示数a的点离开原点的距离,叫做数a的绝对值。 (2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零 例题:|-8|= 数轴上表示-2.5的点到原点的距离 。练习:(1)若|a|=2,则a= 。 (2)|-|的相反数是 。 (3)到原点5个单位长度的点是 。 (4)若|m|=-m,则m是 。若|m|=m,则m是 。作业:写出下列个数的绝对值,并在数轴上表示出来。(3)绝对值的主要性质 一个数的绝对值是一个非负数,即a0,因此,在实数范围内,
21、绝对值最小的数是零 (4)两个相反数的绝对值相等 例题:若|x+2|=0,则x= 习题:(1)若|x+2|+|y-3|=0,则x= ,y= .(2)若|a|=4,|b|=3,且a<b,试求 a、b的值。 (3)下列说法正确的是 任何一个有理数的绝对值一定是大于0的。 一个有理数的绝对值不小于它自身。如果两个数的绝对值相等,那么这两个数相等。 绝对值等于本身的数是非负数。绝对值最小的有理数不存在。 任何数的绝对值都不小于原数。(4)|x+5|的最小值是 。作业:(1)写出绝对值不大于3的所有整数 (2) 若|x|=|-4|,则x= .(5)有理数大小比较原则正数都大于
22、0,负数都小于0,正数大于一切负数。两个负数,绝对值大的反而小.。例题:(1)比较大小0 -0.001 -5 -|-4| (2)因为| ,所以, 习题:(1)实数a,b在数轴上的位置如图所示,是比较a,-a,b,-b的大小关系。b0a (2)比较大小 和 -|-3|和(3)大于-3且不大于5的整数有 个,其中奇数有 个。作业:(1)将有理数0,-3.14, 2.7, -4, 0.15 按从小到大的顺序排列起来,并用“>”连接。(2)若x<y<0,则 -x y, x -y , |x| |y|7有理数的加法 (1)有理数加法法则 1)同号两数相加,取相同的符号,并把绝对值相加。
23、2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。 3)互为相反数的两个数相加得零。 4)一个数与0相加,仍得这个数。例题:计算 (-4)+(-7)= -9.5+0= 习题:(1)下列说法正确的是 若两个数的和为正数,则这两个数都是正数。两个有理数相加,和一定大于每一个加数。两个有理数的和可能为0。 两个有理数的和可能等于其中一个加数。若a与-2互为相反数,则a+(-2)=0。(2)如果|x|=2,|y|=3, 则x,y同号,x+y= x,y异号,x+y= 作业:(1)计算 (+6.5)+(-4.1)= (-2.1)+(-3.9)= m+0= m+(-
24、m)=(2)用算式表示: 温度-10上升了3达到 0.25的相反数与-0.75的绝对值的和。 绝对值不大于-4.3的所有整数的和。(2)有理数加法的运算律 加法交换律:abba 加法结合律:(a+b)+c=a+(b+c)例题:(1) 计算 (2) 某校购回面粉10袋,每袋50千克,入库时又重新称量,结果如下,(超过的千克数记为正数,不足的千克数 记为负数)。+0.8,-0.5,+1.1,0,-0.3,+0.4,-1.2,-0.7,+0.6。 问:该校共买进面粉多少千克? 平均每袋面粉重多少? 平均每袋面粉比标准量多还是少?练习:(1)计算: (2)出租车司机小李某天下午的营运全是在东西走向的大
25、道上进行的,如果规定向东为正,向西为负,他这天下午的行车里程如下(单位:千米):+15,-3,+14,-11,+10,-12,+4,-15,+16,-18。将最后一名乘客从到目的地时,小李距最初的出发点多少千米?若汽车的耗油量为a升每千米,那么这天下午小李的车共耗油多少升?作业:(1)如果a,b互为相反数,则a+2a+3a+99a+100a+b+2b+99b+100b= 。(2)(-1)+3+(-5)+7+95+(-97)+99= 。8. 有理数的减法 减去一个数等于加上这个数的相反数。 a-b=a+(-b)例题: (1)计算:3-(-5) (-5)-|-5| (2)比0小4的数是 。习题:(
26、1)室内温度是16,室外温度是-7,室内温度比室外温度高 。(2)下列说法正确的是 。 在有理数的减法中,被减数不一定比减数或差大。 两个相反数想减得零。 零减去一个数,仍得这个数。 负数减去正数,差为负数。 较小的数减去较大的数,所得的差一定为负。(3) A、B两点间的距离是多少? A、C两点间的距离是多少? 探究两点间的距离与表示这两点的数有什么关系? 作业:(1)计算: 0-(-5)-(-12)-(+9) (2)某日哈尔滨等五城市最高气温与最低气温记录如下表,哪个城市的温差最大?哪个城市的温差最小?城市哈尔滨长春大连北京沈阳最高气温()236123最低气温()-12-10-22-89有理
27、数的加减混合运算 (1)省略加号和的形式:在一个和式里,通常把各个加数的括号和它前面的加号省略不写。 例如:把-8+(+10)+(-6)+(-4)写成省略加号和的形式为-8+10-6-4。 读作“负8,正10,负6,负4的和”也可读作“负8加10减6减4。 (2)适当的应用加法运算律。例题:(1)把-2-(+3)-(-5)+(-4)+(+3)写成省略括号的形式 。(2)把-5-3+4-7按“和”的意义读作 。按“运算”意义读作 。练习:(1)-7,-12,+2的代数和比他们的绝对值的和小 。(2)已知a= -1,b=2,c= -3,d=4,求a-b-c+d(3)计算:1+2-3-4+5+6-7
28、-8+9+10-11-12+2005+2006-2007-2008作业:(1)计算: 2004-(2008+|2004-2008|)(2) 用算式表示-6的相反数比10的相反数小2的数的和。-0.3的绝对值的相反数与3.5的相反数的差。10有理数的乘法 (1)有理数的乘法法则 两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘都得零。例题:(1)计算: (2)如果|a|=2,|b|=3,且ab<0,求3a+2b的值。练习:(1)下列说法正确的是 。 一个数与1的积等于它本身。 一个数与-1的积是它的相反数。 如果ab=0,则一定有a=b=0。 一个有理数和它相反数的积一定为负。
29、积比每个因数都大。 (2)如果|x|=0.99,|y|=0.09,且xy>0,则x+y= 。(3)在-2,3,-4,5中任取两个数相乘,所得的积最大是 。作业:是否存在这样的两个数,他们的和和他们的积相等,如:2+2=2×2。其实这样的数有很多,如:,请再写出三组这样的式子。(2)几个不等于零的数相乘,积的正负号由负因数的个数决定,当负号的个数为奇数时,积为负;当负号的个数为偶数时,积为正。 几个数相乘,有一个因数为零,积就为零。例题: -7×8×(-9)×10×0=练习:(1)(10-11)×(11-12)×(12-
30、13)××(99-100)=(2)如果三个数的积为负数,则这几个数中有 个负因数。(3)乘法运算律 乘法交换律: ab=ba 乘法结合律:(ab)c=a(bc) 乘法对加法的分配律:a(b+c)=ab+ac例题:(1)(-7)×(-2)+(-12)×(-7)-(-3)×(-7)=(2)练习:(1)在2×(-6)×5=-6×(2×5)中运用了( ) A 乘法交换律 B乘法结合律 C乘法结合律和乘法交换律 D 乘法分配律 (2)用简便方法计算: 作业:(1)若a,b异号,那么|1-ab|= 。(2)11有理数
31、的除法 (1)倒数:乘积为1的两个数互为倒数。 【注】0没有倒数。例题:求下列各数的倒数。8,0.5,练习:(1)若一个数的倒数等于它本身,则这个数是 。(2)下列说法正确的是 。只有1的倒数等于它的本身。 3.5的倒数是3.5。 零没有倒数。 0.1的倒数是10。任何一个有理数a的倒数都等于。 两个数的积等于1,这两个数互为倒数。(2)有理数除法法则1:除以一个数等于乘以这个数的倒数。 【注】0不能做除数。 (3)有理数的除法法则2:两数相除,同号得正,异号得负,并把绝对值相除。零除以任何一个不等于的数,都得零。例题:(1)计算:(-32)÷(-8)= (2)当x= 时,没有意义。
32、练习:(1)已知:a,b互为倒数,c,d互为相反数,x的绝对值是2,求的值。(2)当x= 时,的值为0。(3)某人到保险公司办理火灾保险,保险金为其房屋价值的,按规定,每元保险金里交付1分5厘(即保险费率为1.5%)已知这人一年应交付保险费184元,问:其房屋的价值是多少元?作业:(1)计算: (2)体育课上,全班男同学进行百米测验,达标成绩为15秒,下面是第一组8名男生的成绩记录,其中“+”表示成绩大于15秒。-0.8.,+1.0,-1.2,-0.7,+0.5,-0.5,+0.1。这个小组的男生达标率是多少?这个小组的平均成绩是多少秒?12有理数的乘方(1)求几个相同因数积的运算,叫做乘方。
33、 个(2)乘方的结果叫做幂,a叫做底数,n叫做指数。例题:(1)在中,指数是 ,底数是 ,幂是 。 在中,指数是 ,底数是 ,幂是 。(2)把下列各式写成幂的形式 (-6)(-6)(-6)(-6)= ××= 练习:(1) 表示( )A 5个-2相乘 B 5个2相乘的相反数 C 2个-5相乘 D 2个5相乘的相反数(2) , , (3)有理数乘方法则:正数的任何次幂都是正数,负数的奇次幂是负数,负数的偶次幂是正数,0的任何非0次幂都是零。例题:(1)计算: (2) ( n为正整数) 练习:(1)|x+5|+(y-2) =0,那么x= ,y= , (2)的末位数字是 。(3)一
34、根绳子,第一次减去一半,第二次减去剩下的一半,如果剪下去,第六次后剩下的绳子的长度为 。(4)的个位数字是 。作业:(1)若x,y为有理数,下列各式成立的是( ) (2)拉面师傅用一根很粗的面条,把两头捏合在一起拉伸,在捏合,再拉,反复几次,就把很粗的面条拉成了许多根很细的面条,这样捏合到第 次后拉出128根面条。13科学记数法 (1)一般的,10的n次幂,在1的后面有n的0。 (2)一个大于0的数就记成的形式。其中n是正整数。像这样的记数法叫做科学记数法。 (3)用科学记数法表示一个数时,10的指数等于原数的整数位数减1。(或等于小数点向右移动的位数。例题:(1)把下列各数用科学记数法表示
35、300000= 40800000= 4879.5= -369000000=(2)下面是用科学记数法表示的数,则原来的数是什么? 练习:(1)25.8万用科学记数法表示 。 (2)光的传播速度是300000km/s,太阳照射到地球上大约需要500s,则太阳岛地球的距离用科学记数法可表示为 。 14有理数的混合运算(1)先算乘方,再算乘除,最后算加减。(2)同级运算,按照从左至右的顺序进行。(3)如果有括号,就先算小括号里的,§再算中括号里的,然后算大括号里的。例题:计算: 练习:(1)有理数a等于它的倒数,有理数b等于它的相反数,求的值。(2)若m,n互为相反数,则5m+5n-5= 。
36、 (3 ) 用3,-5,7,-13这四个数,进行加、减、成、除运算,每个数字用一次,使其结果为24作业: 计算:15近似数和有效数字 (1)准确数:完全符合实际的数。 (2)近似数:和准确数非常接近的数。近似数和准确数接近的程度叫做精确度。 (3)一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位,这时,从左边第一个不是0的数字起到精确到的位数止,所有的数字都叫做这个数的有效数字。 (4)近似数的精确度有两种形式:1)精确到哪一位,2)保留几个有效数字。例题:(1)按要求对下列各题去近似值 0.005308 (保留三个有效数字) 0.49996 (精确到0.001) 120000 (保留
37、2个有效数字) (保留3个有效数字) 738600000(精确到百万位) (精确到百位) 78.98万(精确到万位)(2)下列各数均为近似数,分别精确到哪一位,有几个有效数字。 0.0280 4.876 550 0.028 30万 48760 (3) 近似数2.30表示的精确度的范围是( ) A 2.295<2.305 B 2.25<2.35 C 2.295<2.305 D2.25<2.35第三章:实数知识梳理一数的开方主要知识点:【1】平方根:如果一个数x的平方等于a,那么,这个数x就叫做a的平方根;也即,当时,我们 称x是a的平方根,记做:。因此: 当a=0时,它的
38、平方根只有一个,也就是0本身; 当a0时,也就是a为正数时,它有两个平方根,且它们是互为相反数,通常记做:。 当a0时,也即a为负数时,它不存在平方根。 2、 ( 3、 例1.(1) 的平方是64,所以64的平方根是 ;(2) 的平方根是它本身。(3)若的平方根是±2,则x= ;的平方根是 (4)当x 时,有意义。(5)一个正数的平方根分别是m和m-4,则m的值是多少?这个正数是多少?(6)已知,若,则= 【算术平方根】: (1)如果一个正数x的平方等于a,即,那么,这个正数x就叫做a的算术平方根,记为:“”,读作,“根号a”,其中,a称为被开方数。特别规定:0的算术平方根仍然为0。
39、(2)算术平方根的性质:具有双重非负性,即:。(3)算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。因此,算术平方根只有一个值,并且是非负数,它只表示为:;而平方根具有两个互为相反数的值,表示为:。例2.(1)下列说法正确的是 ( )A1的立方根是; B;(C).的平方根是;( D)、0没有平方根; (2)下列各式正确的是( )A、 B、 C、 D、(3)的算术平方根是 。(4)若有意义,则_。(5)已知ABC的三边分别是且满足,求c的取值范围。(6)已知:A=是的算术平方根,B=是的立方根。求AB的平方根。(7)(提高题)如果x、y分别是4的整数部分
40、和小数部分。求x y的值.【立方根】 (1)如果x的立方等于a,那么,就称x是a的立方根,或者三次方根。记做:,读作,3次根号a。注意:这里的3表示的是开根的次数。一般的,平方根可以省写根的次数,但是,当根的次数在两次以上的时候,则不能省略。(2) 平方根与立方根:每个数都有立方根,并且一个数只有一个立方根;但是,并不是每个数都有平方根,只有非负数才能有平方根。(3) = =
41、160; 例3.(1)64的立方根是 (2)若,则b等于( ) A. 1000000 B. 1000 C. 10 D. 10000(3)下列说法中:都是27的立方根,的立方根是2,。其中正确的有 ( )A、1个 B、2个 C、3个 D、4个【无理数】 (1)无限不循环小数的小数叫做无理数;它必须满足“无限”以及“不循环”这两个条件。在初中阶段,无理数的表现形式主要包含下列几种:(1)特殊意义的数,如:圆周率以及含有的一些数,如:2-,3等;(2)开方开不
42、尽的数,如:等;(3)特殊结构的数:如:2.010 010 001 000 01(两个1之间依次多1个0)等。应当要注意的是:带根号的数不一定是无理数,如:等;无理数也不一定带根号,如:(2) 有理数与无理数的区别:(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。例4.(1)下列各数:3.141、0.33333、0.3030003000003(相邻两个3之间0的个数逐次增加2)、其中是有理数的有;是无理数的有。(填序号)(2)有五个数:0.125125,0.1010010001,-,其中无理数有 ( )个A 2 B 3 C 4 D 5 【实数】(1)有理数与无理数统称为实数。在实数中,没有最大的实数,也没有最小的实数;绝对值最小的实数是0,最大的负整数是-1。(2)实数的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《卓越在中层》课件
- 【中职思想政治】《哲学与人生》期末必刷题(高教版2023基础模块)第8课 在实践出提高认识能力答案
- 幼儿营养与膳食管理教学课件
- 高效团队建设与管理培训
- 《万科企业内部管理》课件
- 《三维模型解析》课件
- 外贸单证实务第五版课件
- 2025婚礼策划服务合同
- 2025综合型生产设备租赁合同
- 2025标准劳动合同范本模板
- 初中八年级上册信息技术《用Python编程》教学设计
- 施工项目安全交底确认书
- 国际机票后端引擎缓存系统架构
- 贵州干部履历表(2023版)
- 消火栓月检查表
- 高血压脑病-PPT课件
- 人防工程竣工资料(全套)
- 《电子病历模板》word版参考模板
- 30万吨年煤制甲醇变换工段初步设计
- (高清版)JGJ123-2012既有建筑地基基础加固技术规范
- 蒸汽管道试运行方案2015.9.18
评论
0/150
提交评论