




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、绪 论当今市场上不同车型所配置的变速器主要分为:手动变速器(MT)、自动变速器(AT)、手动/自动变速器(AMT)、无级变速器(CVT)。一、手动变速器(MT)手动变速器(Manual Transmission,简称MT),也叫手动挡,即必须用手拨动变速杆(俗称“挡把”)才能改变变速器内的齿轮啮合位置,改变传动比,从而达到变速的目的。手动变速在操纵时必须踩下离合,方可拨得动变速杆。一般来说,如果驾驶者技术好,手动变速的汽车在加速、超车时比自动变速车快,也省油。二、自动变速器(AT)自动变速器(Automatic Transmission,简称AT),利用行星齿轮机构进行变速,它能根据油门踏板程
2、度和车速变化,自动地进行变速。而驾驶者只需操纵加速踏板控制车速即可。虽说自动变速汽车没有离合器,但自动变速器中有很多离合器,这些离合器能随车速变化而自动分离或合闭,从而达到自动变速的目的。三、无极变速器无级变速器(CVT)最早由荷兰人Van Doorne's发明。无级变速系统不像手动变速器或自动变速器那样用齿轮变速,而是用两个滑轮和一个钢带来变速,其传动比可以随意变化,没有换挡的突跳感觉。无级变速器属于自动变速器的一种,但它能克服普通自动变速器“突然换挡”、油门反应慢、油耗高等缺点。1手动变速器的原理概述及方案确定1.1手动变速器的变速原理因为发动机直接输出的转矩变化范围是比较小的,而
3、汽车起步、上坡却需要大的转矩,高速行驶时,只需要较小的转矩,如直接把发动机的动力来驱动汽车的话,就很难实现汽车的起步、上坡或高速行驶。另外,汽车需要倒车,也必须要用到变速器来实现。变速箱为什么可以调整发动机输出的转矩和转速呢?其实这里蕴含了齿轮和杠杆的原理。变速箱内有多个不同的齿轮,通过不同大小的齿轮组合一起,就能实现对发动机转矩和转速的调整。用低转矩可以换来高转速,用低转速则可以换来高转矩。变速器的作用主要表现在三方面:第一,改变传动比,扩大驱动轮的转矩和转速的变化范围;第二,在发动机转向不变的情况下,实现汽车倒退行驶;第三,利用空档,可以中断发动机动力传递,使得发动机可以起动、怠速。手动变
4、速器的工作原理,就是通过拨动变速杆,切换中间轴上的主动齿轮,通过大小不同的齿轮组合与动力输出轴结合,从而改变驱动轮的转矩和转速。下面先看一下简化的手动变速器(2档)的构造图。发动机的动力输入轴是通过一根中间轴,间接与动力输出轴连接的。如上图所示,中间轴的两个齿轮(红色)与动力输出轴上的两个齿轮(蓝色)是随着发动机输出一起转动的。但是如果没有同步器(紫色)的接合,两个齿轮(蓝色)只能在动力输出轴上空转(即不会带动输出轴转动)。图中同步器位于中间状态,相当于变速器挂了空档。当变速杆向左移动,使同步器向右移动与齿轮(如上图所示)接合,发动机动力通过中间轴的齿轮,将动力传递给动力输出轴。一般的手动变速
5、器都有好几个档位(如上图的5档手动变速器),可以理解为在原来的基础上添加了几组齿轮,其实原理都是一样的。如当挂上1挡时,实际上是将(1、2挡同步器)向左移动使同步器与1挡从动齿轮(图中)接合,将动力传递到输出轴。细心的朋友会发现,R档(倒车档)的主动齿轮和从动齿轮中夹了一个中间齿轮,就是通过这个齿轮实现汽车的倒退行驶。1.2 变速器结构方案的确定变速器由传动机构与操纵机构组成。有级变速器与无级变速器相比,其结构简单、制造低廉,具有高的传动效率(=0.960.98),因此在各类汽车上均得到广泛的应用。 设计时首先应根据汽车的使用条件及要求确定变速器的传动比范围、档位数及各档的传动比,因为它们对汽
6、车的动力性与燃料经济性都有重要的直接影响。传动比范围是变速器低档传动比与高档传动比的比值。汽车行驶的道路状况愈多样,发动机的功率与汽车质量之比愈小,则变速器的传动比范围应愈大。目前,轿车变速器的传动比范围为3.04.5;一般用途的货车和轻型以上的客车为5.08.0;越野车与牵引车为10.020.0。通常,有级变速器具有3、4、5个前进档;重型载货汽车和重型越野汽车则采用多档变速器,其前进档位数多达616个甚至20个。变速器档位数的增多可提高发动机的功率利用效率、汽车的燃料经济性及平均车速,从而可提高汽车的运输效率,降低运输成本。但采用手动的机械式操纵机构时,要实现迅速、无声换档,对于多于5个前
7、进档的变速器来说是困难的。因此,直接操纵式变速器档位数的上限为5档。多于5个前进档将使操纵机构复杂化,或者需要加装具有独立操纵机构的副变速器,后者仅用于一定行驶工况。某些轿车和货车的变速器,采用仅在好路和空载行驶时才使用的超速档。采用传动比小于1(0.70.8)的超速档,可以更充分地利用发动机功率,降低单位行驶里程的发动机曲轴总转数,因而会减少发动机的磨损,降低燃料消耗。但与传动比为1的直接档比较,采用超速档会降低传动效率。有级变速器的传动效率与所选用的传动方案有关,包括传递动力的齿轮副数目、转速、传递的功率、润滑系统的有效性、齿轮及轴以及壳体等零件的制造精度、刚度等。三轴式和两轴式变速器得到
8、的最广泛的应用。三轴式变速器如图1-1所示,其第一轴的常啮合齿轮与第二轴的各档齿轮分别与中间轴的相应齿轮相啮合,且第一、第二轴同心。将第一、第二轴直接连接起来传递扭矩则称为直接档。此时,齿轮、轴承及中间轴均不承载,而第一、第二轴也传递转矩。因此,直接档的传递效率高,磨损及噪音也最小,这是三轴式变速器的主要优点。其他前进档需依次经过两对齿轮传递转矩。因此。在齿轮中心距(影响变速器尺寸的重要参数)较小的情况下仍然可以获得大的一档传动比,这是三轴式变速器的另一优点。其缺点是:处直接档外其他各档的传动效率有所下降。图1-1 轿车中间轴式四档变速器1 第一轴;2第二轴;3中间轴两轴式变速器如图1-2所示
9、。与三轴式变速器相比,其结构简单、紧凑且除最到档外其他各档的传动效率高、噪声低。轿车多采用前置发动机前轮驱动的布置,因为这种布置使汽车的动力-传动系统紧凑、操纵性好且可使汽车质量降低6%10%。两轴式变速器则方便于这种布置且传动系的结构简单。如图所示,两轴式变速器的第二轴(即输出轴)与主减速器主动齿轮做成一体,当发动机纵置时,主减速器可用螺旋锥齿轮或双面齿轮;当发动机横置时则可用圆柱齿轮,从而简化了制造工艺,降低了成本。除倒档常用滑动齿轮(直齿圆柱齿轮)外,其他档均采用常啮合斜齿轮传动;个档的同步器多装在第二轴上,这是因为一档的主动齿轮尺寸小,装同步器有困难;而高档的同步器也可以装在第一轴的后
10、端,如图示。两轴式变速器没有直接档,因此在高档工作时,齿轮和轴承均承载,因而噪声比较大,也增加了磨损,这是它的缺点。另外,低档传动比取值的上限(ig=4.04.5)也受到较大限制,但这一缺点可通过减小各档传动比同时增大主减速比来取消。图1-2 两轴式变速器1 第一轴;2第二轴;3同步器有级变速器结构的发展趋势是增多常啮合齿轮副的数目,从而可采用斜齿轮。后者比直齿轮有更长的寿命、更低的噪声,虽然其制造稍复杂些且在工作中有轴向力。因此,在变速器中,除低档及倒档外,直齿圆柱齿轮已经被斜齿圆柱齿轮所代替。但是在本设计中,由于倒档齿轮采用的是常啮式,因此也采用斜齿轮。1.3变速器主要零件结构的方案分析变
11、速器的设计方案必需满足使用性能、制造条件、维护方便及三化等要求。在确定变速器结构方案时,也要考虑齿轮型式、换档结构型式、轴承型式、润滑和密封等因素。齿轮型式与直齿圆柱齿轮比较,斜齿圆柱齿轮有使用寿命长,工作时噪声低等优点;缺点是制造时稍复杂,工作时有轴向力。变速器中的常啮合齿轮均采用斜齿圆柱齿轮,尽管这样会使常啮合齿轮数增加,并导致变速器的转动惯量增大。直齿圆柱齿轮仅用于低档和倒挡。但是,在本设计中由于倒档采用的是常啮合方案,因此倒档也采用斜齿轮传动方案,即除一档外,均采用斜齿轮传动。.换档结构型式换档结构分为直齿滑动齿轮、啮合套和同步器三种。直齿滑动齿轮换档的特点是结构简单、紧凑,但由于换档
12、不轻便、换档时齿端面受到很大冲击、导致齿轮早期损坏、滑动花键磨损后易造成脱档、噪声大等原因,初一档、倒档外很少采用。啮合套换档型式一般是配合斜齿轮传动使用的。由于齿轮常啮合,因而减少了噪声和动载荷,提高了齿轮的强度和寿命。啮合套有分为内齿啮合套和外齿啮合套,视结构布置而选定,若齿轮副内空间允许,采用内齿结合式,以减小轴向尺寸。结合套换档结构简单,但还不能完全消除换档冲击,目前在要求不高的档位上常被使用。采用同步器换档可保证齿轮在换档时不受冲击,使齿轮强度得以充分发挥,同时操纵轻便,缩短了换档时间,从而提高了汽车的加速性、经济性和行驶安全性,此外,该种型式还有利于实现操纵自动化。其缺点是结构复杂
13、,制造精度要求高,轴向尺寸有所增加,铜质同步环的使用寿命较短。目前,同步器广泛应用于各式变速器中。自动脱档是变速器的主要障碍之一。为解决这个问题,除工艺上采取措施外,在结构上,目前比较有效的方案有以下几种:1) 将啮合套做得长一些(如图1-7a)或者两接合齿的啮合位置错开(图1-7b),这样在啮合时使接合齿端部超过被接合齿约13mm。使用中因接触部分挤压和磨损,因而在接合齿端部形成凸肩,以阻止自动脱档。2)将啮合套齿座上前齿圈的齿厚切薄(0.30.6mm),这样,换档后啮合套的后端面便被后齿圈的前端面顶住,从而减少自动脱档(图1-8)。3)将接合齿的工作面加工成斜齿面,形成倒锥角(一般倾斜20
14、30),使接合齿面产生阻止自动脱档的轴向力 (图1-9)。这种结构方案比较有效, 图1-7 防止自动脱档的结构措施采用较多。 此段切薄图1-8 防止自动脱档的结构措施加工成斜面图1-9 防止自动脱档的结构措施在本设计中所采用的是锁环式同步器,该同步器是依靠摩擦作用实现同步的。但它可以从结构上保证结合套与待啮合的花键齿圈在达到同步之前不可能接触,以免齿间冲击和发生噪声。同步器的结构如图1-10所示图1-10 锁环式同步器l、4-同步环;2-同步器齿鼓;3-接合套;5-弹簧;6滑块;7-止动球;8-卡环;9输出轴;10、11-齿轮2 变速器主要参数的选择与主要零件的设计2.1 变速器主要参数的确定
15、本设计所采用的主要参数:主减速比:4.782最高时速:190km/h满载质量 1800kg;轮胎型号:205/65R15发动机型号:SQR481FC最大扭矩:170Nm/4500最大功率:95kw/5750最高转速:6000r/min档数和传动比近年来,为了降低油耗,变速器的档数有增加的趋势。目前,乘用车一般用45个档位的变速器。本设计也采用5个档位。选择最低档传动比时,应根据汽车最大爬坡度、驱动轮与路面的附着力、汽车的最低稳定车速以及主减速比和驱动轮的滚动半径等来综合考虑、确定。汽车爬陡坡时车速不高,空气阻力可忽略,则最大驱动力用于克服轮胎与路面间的滚动阻力及爬坡阻力。故有则由最大爬坡度要求
16、的变速器档传动比为 (2-1)式中 m-汽车总质量;g-重力加速度;max-道路最大阻力系数;rr-驱动轮的滚动半径;Temax-发动机最大转矩; i0-主减速比;-汽车传动系的传动效率。根据驱动车轮与路面的附着条件求得的变速器I档传动比为: (2-2)式中 G2-汽车满载静止于水平路面时驱动桥给路面的载荷;-路面的附着系数,计算时取=0.50.6。由已知条件:满载质量 1800kg;rr=337.25mm; Temax=170Nm; i0=4.782;=0.95。根据公式(2-2)可得:igI=3.85。超速档的的传动比一般为0.70.8,本设计去五档传动比ig=0.75。中间档的传动比理论
17、上按公比为: (2-3)的等比数列,实际上与理论上略有出入,因齿数为整数且常用档位间的公比宜小些,另外还要考虑与发动机参数的合理匹配。根据上式可的出:=1.51。故有:中心距中心距对变速器的尺寸及质量有直接影响,所选的中心距、应能保证齿轮的强度。三轴式变速器的中心局A(mm)可根据对已有变速器的统计而得出的经验公式初定: (2-4)式中 KA-中心距系数。对轿车,KA =8.99.3;对货车,KA =8.69.6;对多档主变速器,KA =9.511;TI max -变速器处于一档时的输出扭矩:TI max=Te max igI =628.3Nm故可得出初始中心距A=77.08mm。轴向尺寸变速
18、器的横向外形尺寸,可根据齿轮直径以及倒档中间齿轮和换档机构的布置初步确定。轿车四档变速器壳体的轴向尺寸3.03.4A。货车变速器壳体的轴向尺寸与档数有关:四档(2.22.7)A五档(2.73.0)A六档(3.23.5)A当变速器选用常啮合齿轮对数和同步器多时,中心距系数KA应取给出系数的上限。为检测方便,A取整。本次设计采用手动五挡变速器,其壳体的轴向尺寸是377.08mm=231.24mm,变速器壳体的最终轴向尺寸应由变速器总图的结构尺寸链确定。齿轮参数(1)齿轮模数建议用下列各式选取齿轮模数,所选取的模数大小应符合JB111-60规定的标准值。第一轴常啮合斜齿轮的法向模数mn(2-5)其中
19、=170Nm,可得出mn=2.5。一档直齿轮的模数mmm(2-6)通过计算m=3。同步器和啮合套的接合大都采用渐开线齿形。由于制造工艺上的原因,同一变速器中的结合套模数都去相同,轿车和轻型货车取23.5。本设计取2.5。(2)齿形、压力角、螺旋角和齿宽b 汽车变速器齿轮的齿形、压力角、及螺旋角按表2-1选取。表2-1 汽车变速器齿轮的齿形、压力角与螺旋角项目车型 齿形压力角螺旋角轿车高齿并修形的齿形14.5°,15°,16°16.5°25°45°一般货车GB1356-78规定的标准齿形20°20°30°重
20、型车同上低档、倒档齿轮22.5°,25°小螺旋角压力角较小时,重合度大,传动平稳,噪声低;较大时可提高轮齿的抗弯强度和表面接触强度。对轿车,为加大重合度已降低噪声,取小些;对货车,为提高齿轮承载力,取大些。在本设计中变速器齿轮压力角取20°,啮合套或同步器取30°;斜齿轮螺旋角取30°。应该注意的是选择斜齿轮的螺旋角时应力求使中间轴上是轴向力相互抵消。为此,中间轴上的全部齿轮一律去右旋,而第一轴和第二轴上的的斜齿轮去左旋,其轴向力经轴承盖由壳体承受。齿轮宽度b的大小直接影响着齿轮的承载能力,b加大,齿的承载能力增高。但试验表明,在齿宽增大到一定
21、数值后,由于载荷分配不均匀,反而使齿轮的承载能力降低。所以,在保证齿轮的强度条件下,尽量选取较小的齿宽,以有利于减轻变速器的重量和缩短其轴向尺寸。通常根据齿轮模数的大小来选定齿宽:直齿 b=(4.58.0)m,mm斜齿 b=(6.08.5)m,mm第一轴常啮合齿轮副齿宽的系数值可取大一些,使接触线长度增加,接触应力降低,以提高传动的平稳性和齿轮寿命。2.2各档传动比及其齿轮齿数的确定在初选了中心距、齿轮的模数和螺旋角后,可根据预先确定的变速器档数、传动比和结构方案来分配各档齿轮的齿数。下面结合本设计来说明分配各档齿数的方法。确定一档齿轮的齿数 一档传动比(2-7) 为了确定Z9和Z10的齿数,
22、先求其齿数和:(2-8) 其中 A=77.08mm、m=3;故有。当轿车三轴式的变速器时,则,此处取=16,则可得出=35。上面根据初选的A及m计算出的可能不是整数,将其调整为整数后,从式(2-8)看出中心距有了变化,这时应从及齿轮变位系数反过来计算中心距A,再以这个修正后的中心距作为以后计算的依据。这里修正为51,则根据式(2-8)反推出A=76.5mm。确定常啮合齿轮副的齿数由式(2-7)求出常啮合齿轮的传动比 (2-9)由已经得出的数据可确定而常啮合齿轮的中心距与一档齿轮的中心距相等 (2-10)由此可得: (2-11)而根据已求得的数据可计算出: 。 与联立可得:=19、=34。则根据
23、式(2-7)可计算出一档实际传动比为: 。 确定其他档位的齿数二档传动比 (2-12)而 ,故有:对于斜齿轮, (2-13)故有: 联立得:。按同样的方法可分别计算出:三档齿轮 ;四档齿轮 。确定倒档齿轮的齿数一般情况下,倒档传动比与一档传动比较为接近,在本设计中倒档传动比取3.7。中间轴上倒档传动齿轮的齿数比一档主动齿轮10略小,取。而通常情况下,倒档轴齿轮取2123,此处取=23。由 (2-14)可计算出。故可得出中间轴与倒档轴的中心距A= (2-15) =50mm 而倒档轴与第二轴的中心: (2-16) =72.5mm。2.3 齿轮变位系数的选择齿轮的变位是齿轮设计中一个非常重要的环节。
24、采用变位齿轮,除为了避免齿轮产生根切和配凑中心距以外,它还影响齿轮的强度,使用平稳性,耐磨性、抗胶合能力及齿轮的啮合噪声。变位齿轮主要有两类:高度变位和角度变位。高度变位齿轮副的一对啮合齿轮的变位系数的和为零。高度变位可增加小齿轮的齿根强度,使它达到和大齿轮强度想接近的程度。高度变位齿轮副的缺点是不能同时增加一对齿轮的强度,也很难降低噪声。角度变位齿轮副的变位系数之和不等于零。角度变位既具有高度变位的优点,有避免了其缺点。有几对齿轮安装在中间轴和第二轴上组合并构成的变速器,会因保证各档传动比的需要,使各相互啮合齿轮副的齿数和不同。为保证各对齿轮有相同的中心距,此时应对齿轮进行变位。当齿数和多的
25、齿轮副采用标准齿轮传动或高度变位时,则对齿数和少些的齿轮副应采用正角度变位。由于角度变位可获得良好的啮合性能及传动质量指标,故采用的较多。对斜齿轮传动,还可通过选择合适的螺旋角来达到中心距相同的要求。变速器齿轮是在承受循环负荷的条件下工作,有时还承受冲击负荷。对于高档齿轮,其主要损坏形势是齿面疲劳剥落,因此应按保证最大接触强度和抗胶合剂耐磨损最有利的原则选择变位系数。为提高接触强度,应使总变位系数尽可能取大一些,这样两齿轮的齿轮渐开线离基圆较远,以增大齿廓曲率半径,减小接触应力。对于低档齿轮,由于小齿轮的齿根强度较低,加之传递载荷较大,小齿轮可能出现齿根弯曲断裂的现象。总变位系数越小,一对齿轮
26、齿更总厚度越薄,齿根越弱,抗弯强度越低。但是由于轮齿的刚度较小,易于吸收冲击振动,故噪声要小些。根据上述理由,为降低噪声,变速器中除去一、二档和倒档以外的其他各档齿轮的总变位系数要选用较小的一些数值,以便获得低噪声传动。其中,一档主动齿轮10的齿数Z1017,因此一档齿轮需要变位。变位系数 (2-17)式中 Z为要变位的齿轮齿数。3 变速器齿轮的强度计算与材料的选择3.1 齿轮的损坏原因及形式齿轮的损坏形式分三种:轮齿折断、齿面疲劳剥落和移动换档齿轮端部破坏。轮齿折断分两种:轮齿受足够大的冲击载荷作用,造成轮齿弯曲折断;轮齿再重复载荷作用下齿根产生疲劳裂纹,裂纹扩展深度逐渐加大,然后出现弯曲折
27、断。前者在变速器中出现的很少,后者出现的多。齿轮工作时,一对相互啮合,齿面相互挤压,这是存在齿面细小裂缝中的润滑油油压升高,并导致裂缝扩展,然后齿面表层出现块状脱落形成齿面点蚀。他使齿形误差加大,产生动载荷,导致轮齿折断。用移动齿轮的方法完成换档的抵挡和倒挡齿轮,由于换档时两个进入啮合的齿轮存在角速度茶,换档瞬间在齿轮端部产生冲击载荷,并造成损坏。3.2 齿轮的强度计算与校核 与其他机械设备使用的变速器比较,不同用途汽车的变速器齿轮使用条件仍是相似的。此外,汽车变速器齿轮所用的材料、热处理方法、加工方法、精度等级、支撑方式也基本一致。如汽车变速器齿轮用低碳合金钢制造,采用剃齿或齿轮精加工,齿轮
28、表面采用渗碳淬火热处理工艺,齿轮精度不低于7级。因此,比用于计算通用齿轮强度公式更为简化一些的计算公式来计算汽车齿轮,同样、可以获得较为准确的结果。在这里所选择的齿轮材料为40Cr。齿轮弯曲强度计算(1) 直齿轮弯曲应力 (3-1)式中,-弯曲应力(MPa);-一档齿轮10的圆周力(N), ;其中 为计算载荷(N·mm),d为节圆直径。 -应力集中系数,可近似取1.65;-摩擦力影响系数,主动齿轮取1.1,从动齿轮取0.9;b-齿宽(mm),取20t-端面齿距(mm);y-齿形系数,如图3-1所示。图3-1 齿形系数图 当处于一档时,中间轴上的计算扭矩为: (3-2) =170100
29、0 =659668Nm 故由 可以得出;再将所得出的数据代入式(3-1)可得 当计算载荷取作用到变速器第一轴上的最大扭矩时,一档直齿轮的弯曲应力在400850MPa之间。(2) 斜齿轮弯曲应力 (3-3)式中 为重合度影响系数,取2.0;其他参数均与式(3-1)注释相同,选择齿形系数y时,按当量模数在图(3-1)中查得。二档齿轮圆周力: (3-4)根据斜齿轮参数计算公式可得出:=6798.8N齿轮8的当量齿数=47.7,可查表(3-1)得:。故 同理可得: 。依据计算二档齿轮的方法可以得出其他档位齿轮的弯曲应力,其计算结果如下:三档:四档:五档: 当计算载荷取作用到第一轴上的最大扭矩时,对常啮
30、合齿轮和高档齿轮,许用应力在180350MPa范围内,因此,上述计算结果均符合弯曲强度要求。 齿轮接触应力 (3-5)式中,-齿轮的接触应力(MPa); F-齿面上的法向力(N),;-圆周力在(N), ;-节点处的压力角(°);-齿轮螺旋角(°);E-齿轮材料的弹性模量(MPa),查资料可取;b-齿轮接触的实际宽度,20mm;-主、从动齿轮节点处的曲率半径(mm);直齿轮: (3-6) (3-7)斜齿轮: (3-8) (3-9)其中,分别为主从动齿轮节圆半径(mm)。将作用在变速器第一轴上的载荷作为计算载荷时,变速器齿轮的许用接触应力见下表:表3-1 变速器齿轮的许用接触应
31、力齿轮/MPa渗碳齿轮液体碳氮共渗齿轮一档和倒档190020009501000常啮合齿轮和高档13001400650700通过计算可以得出各档齿轮的接触应力分别如下:一档: 二档: 三档:四档: 五档: 倒档: 对照上表可知,所设计变速器齿轮的接触应力基本符合要求。4 变速器轴的强度计算4.1变速器轴的结构和尺寸轴的结构第一轴通常和齿轮做成一体,前端大都支撑在飞轮内腔的轴承上,其轴径根据前轴承内径确定。该轴承不承受轴向力,轴的轴向定位一般由后轴承用卡环和轴承盖实现。第一轴长度由离合器的轴向尺寸确定,而花键尺寸应与离合器从动盘毂的内花键统一考虑。第一轴如图4-1所示:图4-1 变速器第一轴中间轴
32、分为旋转轴式和固定轴式。本设计采用的是旋转轴式传动方案。由于一档和倒档齿轮较小,通常和中间轴做成一体,而高档齿轮则分别用键固定在轴上,以便齿轮磨损后更换。其结构如下图所示:一档齿轮 倒档齿轮图4-2 变速器中间轴确定轴的尺寸变速器轴的确定和尺寸,主要依据结构布置上的要求并考虑加工工艺和装配工艺要求而定。在草图设计时,由齿轮、换档部件的工作位置和尺寸可初步确定轴的长度。而轴的直径可参考同类汽车变速器轴的尺寸选定,也可由下列经验公式初步选定:第一轴和中间轴: (4-1)第二轴: (4-2)式中 -发动机的最大扭矩,N·m为保证设计的合理性,轴的强度与刚度应有一定的协调关系。因此,轴的直径
33、d与轴的长度L的关系可按下式选取:第一轴和中间轴: d/L=0.160.18;第二轴: d/L=0.180.21。4.2 轴的校核由变速器结构布置考虑到加工和装配而确定的轴的尺寸,一般来说强度是足够的,仅对其危险断面进行验算即可。对于本设计的变速器来说,在设计的过程中,轴的强度和刚度都留有一定的余量,所以,在进行校核时只需要校核一档处即可;因为车辆在行进的过程中,一档所传动的扭矩最大,即轴所承受的扭矩也最大。由于第二轴结构比较复杂,故作为重点的校核对象。下面对第一轴和第二轴进行校核。第一轴的强度与刚度校核因为第一轴在运转的过程中,所受的弯矩很小,可以忽略,可以认为其只受扭矩。此中情况下,轴的扭
34、矩强度条件公式为 (4-3)式中:-扭转切应力,MPa;T-轴所受的扭矩,N·mm;-轴的抗扭截面系数,;P-轴传递的功率,kw; d-计算截面处轴的直径,mm; -许用扭转切应力,MPa。其中P=95kw,n=5750r/min,d=24mm;代入上式得:由查表可知=55MPa,故,符合强度要求。轴的扭转变形用每米长的扭转角来表示。其计算公式为: (4-4)式中,T -轴所受的扭矩,N·mm;G-轴的材料的剪切弹性模量,MPa,对于钢材,G =8.1MPa;-轴截面的极惯性矩,;将已知数据代入上式可得: 。对于一般传动轴可取;故也符合刚度要求。第二轴的校核计算1)轴的强度
35、校核计算用的齿轮啮合的圆周力、径向力及轴向力可按下式求出: (4-5) (4-6) (4-7)式中 -至计算齿轮的传动比,此处为三档传动比3.85; d-计算齿轮的节圆直径,mm,为105mm;-节点处的压力角,为16°;-螺旋角,为30°;-发动机最大转矩,为170000N·mm。代入上式可得: , , 。危险截面的受力图为:图4-1 危险截面受力分析水平面:(160+75)=75 =1317.4N;水平面内所受力矩: 垂直面: (4-8)=6879.9N垂直面所受力矩:。该轴所受扭矩为:。故危险截面所受的合成弯矩为: (4-9)则在弯矩和转矩联合作用下的轴应力
36、(MPa): (4-10)将代入上式可得:,在低档工作时=400MPa,因此有:;符合要求。2)轴的刚度校核第二轴在垂直面内的挠度和在水平面内的挠度可分别按下式计算: (4-11) (4-12)式中, -齿轮齿宽中间平面上的径向力(N),这里等于;-齿轮齿宽中间平面上的圆周力(N),这里等于; E-弹性模量(MPa),(MPa),E=MPa;I-惯性矩(),d为轴的直径(); a、b-为齿轮坐上的作用力距支座A、B的距离(); L-支座之间的距离()。将数值代入式(4-11)和(4-12)得: 故轴的全挠度为,符合刚度要求。5同步器的确定5.1 同步器结构在前面已经说明,本设计所采用的同步器类
37、型为锁环式同步器,其结构如下图所示:图5-1 锁环式同步器1、9-变速器齿轮 2-滚针轴承 3、8-结合齿圈 4、7-锁环(同步环) 5-弹簧 6-定位销 10-花键毂 11-结合套5.2同步器工作原理同步器的工作原理是:换档时,沿轴向作用在啮合套上的换档力,推啮合套并带动定位销和锁环移动,直至锁环锥面与被接合齿轮上的锥面接触为止。之后,因作用在锥面上的法向力与两锥面之间存在角速度差,致使在锥面上作用有摩擦力矩,它使锁环相对啮合套和滑块转过一个角度,并滑块予以定位。接下来,啮合套的齿端与锁环齿端的锁止面接触,使啮合套的移动受阻,同步器在锁止状态,换档的第一阶段结束。换档力将锁环继续压靠在锥面上,并使摩擦力矩增大,与此同时在锁止面处作用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 福建省历年中考作文题(2013-2024)
- 殡葬管理类试题及答案
- 彩虹交友测试题及答案
- 2024年助理广告师复习材料搜集试题及答案
- 池州学院面试题目及答案
- 2024年设计师生态设计题目及答案
- 办公行政考试题库及答案
- 太原二模试题及答案英语
- 汽车配件营销试题及答案
- 2024年纺织品检验员备考建议试题及答案
- 2025年高中生物学业水平考试知识点归纳总结(复习必背)
- 2025-2030中国晶圆转移机器人末端执行器行业市场发展趋势与前景展望战略研究报告
- 2025年经济学基础知识试题及答案
- 2025年定向钻机操作工培训考试题(附答案)
- 野生菌蘑菇的试题及答案
- 2025-2030全球及中国人工智能基础设施行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 企业技术考核试题及答案
- 河北省唐山市2023-2024学年七年级下学期期中数学试卷(含详解)
- (二模)绍兴市2025届高三高考适应性考试 政治试卷(含答案)
- 室间隔缺损的术后护理
- Unit 5 Here and Now SectionB Project 教学设计 2024-2025学年人教版(2024)七年级英语下册
评论
0/150
提交评论