




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、基因:能够表达和产生蛋白质和RNA的DNA序列,是决定遗传性状的功能单位。基因组:细胞或生物体的一套完整单倍体的遗传物质的总和端粒:以线性染色体形式存在的真核基因组DNA末端都有一种特殊的结构叫端粒。该结构是一段DNA序列和蛋白质形成的一种复合体,仅在真核细胞染色体末端存在。操纵子:是指数个功能上相关的结构基因串联在一起,构成信息区,连同其上游的调控区(包括启动子和操纵基因)以及下游的转录终止信号所构成的基因表达单位,所转录的RNA为多顺反子。顺式作用元件:是指那些与结构基因表达调控相关、能够被基因调控蛋白特异性识别和结合的特异DNA序列。包括启动子、上游启动子元件、增强子、加尾信号和一些反应
2、元件等。反式作用因子:是指真核细胞内含有的大量可以通过直接或间接结合顺式作用元件而调节基因转录活性的蛋白质因子。启动子:是RNA聚合酶特异性识别和结合的DNA序列。增强子:位于真核基因中远离转录起始点,能明显增强启动子转录效率的特殊DNA序列。它可位于被增强的转录基因的上游或下游,也可相距靶基因较远。基因表达:是指生物基因组中结构基因所携带的遗传信息经过转录、翻译等一系列过程,合成特定的蛋白质,进而发挥其特定的生物学功能和生物学效应的全过程。信息分子:调节细胞生命活动的化学物质。其中由细胞分泌的调节靶细胞生命活动的化学物质称为细胞间信息分子;而在细胞内传递信息调控信号的化学物质称为细胞内信息分
3、子。受体:是存在于靶细胞膜上或细胞内能特异识别生物活性分子并与之结合,进而发生生物学效应的的特殊蛋白质。分子克隆:在体外对DNA分子按照即定目的和方案进行人工重组,将重组分子导入合适宿主,使其在宿主中扩增和繁殖,以获得该DNA分子的大量拷贝。蛋白激酶:是指能够将磷酸集团从磷酸供体分子转移到底物蛋白的氨基酸受体上的一大类酶。蛋白磷酸酶:是具有催化已经磷酸化的蛋白质分子发生去磷酸化反应的一类酶分子,与蛋白激酶相对应存在,共同构成了磷酸化和去磷酸化这一重要的蛋白质活性的开关系统。基因工程:有目的的通过分子克隆技术,人为的操作改造基因,改变生物遗传性状的系列过程。载体:能在连接酶的作用下和外源DNA片
4、段连接并运送DNA分子进入受体细胞的DNA分子。转化:指质粒DNA或以它为载体构建的重组DNA导入细菌的过程。感染:以噬菌体、粘性质粒和真核细胞病毒为载体的重组DNA分子,在体外经过包装成具有感染能力的病毒或噬菌体颗粒,才能感染适当的细胞,并在细胞内扩增。转导:指以噬菌体为载体,在细菌之间转移DNA的过程,有时也指在真核细胞之间通过逆转录病毒转移和获得细胞DNA的过程。转染:指病毒或以它为载体构建的重组子导入真核细胞的过程。DNA变性:在物理或化学因素的作用下,导致两条DNA链之间的氢键断裂,而核酸分子中的所有共价键则不受影响。DNA复性:当促使变性的因素解除后,两条DNA链又可以通过碱基互补
5、配对结合形成DNA双螺旋结构。退火:指将温度降至引物的TM值左右或以下,引物与DNA摸板互补区域结合形成杂交链。筑巢PCR:先用一对外侧引物扩增含目的基因的大片段,再用内侧引物以大片段为摸板扩增获取目的基因。可以提高PCR的效率和特异性。原位PCR:以组织固定处理细胞内的DNA或RNA作为靶序列,进行PCR反应的过程。定量PCR:基因表达涉及的转录水平的研究常需要对mRNA进行定量测定,对此采用的PCR技术就叫定量PCR。基因打靶:是指通过DNA定点同源重组,改变基因组中的某一特定基因,从而在生物活体内研究此基因的功能。DNA芯片:DNA芯片技术是指在固相支持物上原位合成寡核苷酸或者直接将大量
6、的DNA探针以显微打印的方式有序地固化于支持物表面,然后与标记的样品杂交,通过对杂交信号的检测分析,即可获得样品的遗传信息。由于常用计算机硅芯片作为固相支持物,所以称为DNA芯片。错义突变:DNA分子中碱基对的取代,使得mRNA的某一密码子发生变化,由它所编码的氨基酸就变成另一种的氨基酸,使得多肽链中的氨基酸顺序也相应的发生改变的突变。无义突变:由于碱基对的取代,使原来可以翻译某种氨基酸的密码子变成了终止密码子的突变。同义突变:碱基对的取代并不都是引起错义突变和翻译终止,有时虽然有碱基被取代,但在蛋白质水平上没有引起变化,氨基酸没有被取代,这是因为突变后的密码子和原来的密码子代表同一个氨基酸的
7、突变。移码突变:在编码序列中,单个碱基、数个碱基的缺失或插入以及片段的缺失或插入等均可以使突变位点之后的三联体密码阅读框发生改变,不能编码原来的蛋白质的突变。癌基因:是细胞内控制细胞生长的基因,具有潜在的诱导细胞恶性转化的特性。当癌基因结构或表达发生异常时,其产物可使细胞无限制增殖,导致肿瘤的发生。包括病毒癌基因和细胞癌基因。细胞癌基因:存在于正常的细胞基因组中,与病毒癌基因有同源序列,具有促进正常细胞生长、增殖、分化和发育等生理功能。在正常细胞内未激活的细胞癌基因叫原癌基因,当其受到某些条件激活时,结构和表达发生异常,能使细胞发生恶性转化。病毒癌基因:存在于病毒(大多是逆转录病毒)基因组中能
8、使靶细胞发生恶性转化的基因。它不编码病毒结构成分,对病毒无复制作用,但是当受到外界的条件激活时可产生诱导肿瘤发生的作用。基因诊断:以DNA或RNA为诊断材料,通过检查基因的存在、结构缺陷或表达异常,对人体的状态和疾病作出诊断的方法和过程。RFLP:即限制性片段长度多态性,个体之间DNA的核苷酸序列存在差异,称为DNA多态性。若因此而改变了限制性内切酶的酶切位点则可导致相应的限制性片段的长度和数量发生变化,称为RFLP。基因治疗:一般是指将限定的遗传物质转入患者特定的靶细胞,以最终达到预防或改变特殊疾病状态为目的治疗方法。反义RNA:碱基序列正好与有意义的mRNA互补的RNA称为反义RNA。可以
9、作为一种调控特定基因表达的手段。核酶:是一种可以催化RNA切割和RNA剪接反应的由RNA组成的酶,可以作为基因表达和病毒复制的抑制剂。三链DNA:当某一DNA或RNA寡核苷酸与DNA高嘌呤区可结合形成三链,能特异地结合在DNA的大沟中,并与富含嘌呤链上的碱基形成氢键。SSCP:单链构象多态性检测是一种基于DNA构象差别来检测点突变的方法。相同长度的单链DNA,如果碱基序列不同,形成的构象就不同,这样就形成了单链构象多态性。管家基因:在生物体生命的全过程都是必须的,且在一个生物个体的几乎所有细胞中持续表达的基因。细胞全能性:指同一种生物的所有细胞都含有相同的DNA,即基因的数目和种类是一样的,但
10、在不同阶段,同一个体的不同组织和器官中基因表达的种类和数目是不同的。SD序列:转录出的mRNA要进入核糖体上进行翻译,需要一段富含嘌呤的核苷酸序列与大肠杆菌16S rRNA3,末端富含嘧啶的序列互补,是核糖体的识别位点。反义核酸技术:是通过合成一种短链且与DNA或RNA互补的,以DNA或RNA为目标抑制翻译的反义分子,干扰目的基因的转录、剪接、转运、翻译等过程的技术。核酸探针:探针是指能与某种大分子发生特异性相互作用,并在相互作用之后可以检测出来的生物大分子。核酸探针是指能识别特异碱基顺序的带有标记的一段DNA或RNA分子。周期蛋白:是一类呈细胞周期特异性或时相性表达、累积与分解的蛋白质,它与
11、周期素依赖性激酶共同影响细胞周期的运行。CAP:是大肠杆菌分解代谢物基因活化蛋白,这种蛋白可将葡萄糖饥饿信号传递个许多操纵子,使细菌在缺乏葡萄糖时可以利用其他碳源翻译(translation):以mRNA为模板,氨酰-tRNA为原料直接供体,在多种蛋白质因子和酶的参与下,在核糖体上将mRNA分子上的核苷酸顺序表达为有特定氨基酸顺序的蛋白质的过程。密码子(codon):mRNA中碱基顺序与蛋白质中氨基酸顺序的对应关系是通过密码实现的, mRNA中每三个相邻的碱基决定一个氨基酸,这三个相邻的碱基称为一个密码子。密码的简并性(degeneracy):个氨基酸具有两个以上密码子的现象。同义密码子(sy
12、nonym codon):为同种氨基酸编码的各个密码子,称为同义密码了。变偶假说(wobble hypothesis):指反密码子的前两个碱基(3-端)按照标准与密码子的前两个碱基(5-端)配对,而反密码子中的第三个碱墓则有某种程度的变动,使其有可能与几种不同的碱基配对。移码突变(frame-shift mutation):在mRNA中,若插入或删去一个核苷酸,就会使读码发错误,称为移码,由于移码而造成的突变、称移码突变。 同功受体(isoacceptor):转运同一种氨基酸的几种tRNA称为同功受体。反密码子(anticodon):指tRNA反密码子环中的三个核苷酸的序列,在蛋白质合成过程中
13、通过碱基配对,识别并结合到mRNA的特殊密码上。多核糖体(polysome):mRNA同时与若干个核糖体结合形成的念珠状结构,称为多核糖体。中心法则(central dogma):生物体遗传信息流动途径。最初由Crick(1958)提出,经后人的不断补充和修改,现包括反转录和RNA复制等内容。半保留复制(简称复制)(semiconservative replication):亲代双链DNA以每条链为模板,按碱基配对原则各合成一条互补链,这样一条亲代DNA双螺旋,形成两条完全相同的子代DNA螺旋,子代DNA分子中都有一条合成的“新”链和一条来自亲代的旧链,称为半保留复制。DNA聚合酶(DNA p
14、olymerase):指以脱氧核苷三磷酸为底物,按5 3方向合成DNA的一类酶,反应条件:4种脱氧核苷三磷酸、Mg+、模板、引物。DNA聚合酶是多功能酶,除具有聚合作用外,还具有其它功能,不同DNA聚合酶所具有的功能不同。解旋酶(helicase):是一类通过水解ATP提供能量,使DNA双螺旋两条链分开的酶,每解开一对碱基,水解2分子ATP。拓扑异构酶(topoisomerase):是一类引起DNA拓扑异构反应的酶,分为两类:类型I的酶能使DNA的一条链发生断裂和再连接,反应无需供给能量,类型的酶能使DNA的两条链同时发生断裂和再连接,当它引入超螺旋时,需要由ATP供给能量。单链DNA结合蛋白
15、(single-strand binding protein ,SSB):是一类特异性和单链区DNA结合的蛋白质。它的功能在于稳定DNA解开的单链,阻止复性和保护单链部分不被核酸酶降解。 DNA连接酶(DNA ligase):是专门催化双链DNA中缺口共价连接的酶,不能催化两条游离的单链DNA链间形成磷酸二酯键。反应需要能量。引物酶及引发体(primase primosome):以DNA为模板,以核糖核苷酸为底物,在DNA合成中,催化形成RNA引物的酶称为引物酶及引物体。大肠杆菌的引物酶单独没有活性,只有与其它蛋白质结合在一起,形成一个复合体,即引发体才有生物活性。 复制叉(replicati
16、on fork):复制中的DNA分子,末复制的部分是亲代双螺旋,而复制好的部分是分开的,由两个子代双螺旋组成,复制正在进行的部分呈丫状叫做复制叉。 复制眼结构:在一段DNA上,正在复制的部分形成眼状结构。复制眼在环状DNA上形成的结构与希腊字母相象,所以叫结构。 前导链(1eading strand):在DNA复制过程中,以亲代链(3 5为模板时,子代链的合成 (5 3)是连续的这条能连续合成的链称前导链。 冈崎片段(Okazaki fragment)、后随链(1agging strand):在DNA复制过程中,以亲代链(5 3)为模板时,子代链的合成不能以3 5方向进行,而是按5 3方向合成
17、出许多小片段,因为是冈崎等人研究发现,因此称冈崎片段。由许多冈崎片段连接而成的子代链称为后随链。半不连续复制(Semidiscontinuous replication):在DNA复制过程中,一条链的合成是连续的,另一条链的合成是不连续的,所以叫做半不连续复制。逆转录(reverse transcription):以RNA为模板合成DNA的过程。逆转录酶(reverse transeriptase):催化以RNA为模板合成DNA的逆转录过程的酶。 Temin(1960)首次从劳氏肉瘤病毒中发现。逆转录酶具有多种酶活性:依赖RNA的DNA聚合酶活性;依赖DNA的DNA聚合酶活性,RNA水解酶活性
18、,DNA合成方向5 3。合成时需要引物与模板。突变(mutation):基因组DNA顺序上的任何一种改变都叫做突变。分点突变和结构畸变点突变(Point mutation):是指一个或几个碱基对被置换(replacement),这种置换又分两种形式:转换(transition)一-指用一个嘌呤碱置换另一个嘌呤碱,一个嘧啶碱置换另一个嘧啶碱;颠换(transversion)一-指用嘌呤碱置换嘧啶碱或用嘧啶碱置换嘌呤碱。结构畸变:基因中的缺口、或插入(insertion)或缺失(deletion)某些碱基造成移码突变使 DNA的模板链失去功能。诱变剂(mutagen):使基因组发生突变的物理、化学
19、、生物因素叫诱变剂。修复(repair):除去DNA上的损伤,恢复DNA的正常结构和功能是生物机体的一种保护功能。光裂合酶修复(又称光复活)(photoreactivation):可见光将光裂合酶激活,它分解DNA上由紫外线照射而形成的嘧啶二聚体,使它们恢复成两个单独的嘧啶碱。切除修复(excision repair):在一系列酶的作用下,将DNA分子中受损伤部分切除,以互补链为模板,合成出空缺的部分,使DNA恢复正常结构的过程。重组修复(recombination repair):DNA在有损伤的情况下也可以复制,复制时子代链跃过损伤部位并留下缺口,通过分子间重组,从完整的另一条母链上将相应
20、的核苷酸序列片段移至子链缺口处,然后用再合成的多核苷酸的序列补上母链的空缺,此过程称重组修复。诱导修复和应急反应(induction repair and SOS response)(SOS修复):由于DNA受到损伤或复制系统受到抑制所诱导引起的一系列复杂的应急效应,称为应急反应。SOS反应主要包括两个方面:DNA损伤修复(SOS修复或称诱导修复)和诱变效应。SOS修复是一种易出差错的修复过程,虽能修复DNA的损伤而避免死亡。但却带来高的变异率。DNA重组(recombination):DNA重组是指在真核生物减数分裂过程中,细菌细胞的转化中、病毒转导中等发生的DNA片段的交换或插入。基因工程
21、(又称基因重组技术)(gene/genetic engineering):是将外源基因经过剪切加工,再插入到一个具有自我复制能力的载体DNA中,将新组合的DNA转移到一个寄主细胞中,外源基因就可以随着寄主细胞的分裂进行繁殖,寄主细胞也借此获得外源基因所携带的新特性。转录(transcription):由依赖于DNA的RNA聚合酶催化,以DNA的一条链的一定区段为模板,按照碱基配对原则,合成一条与DNA链互补的RNA链的过程。模板链(template strand)又称负(-)链,反意义链(antisense strand):转录过程中用作模板的这条DNA链,称模板链。非模板链(nontempl
22、ate strand)又称正(+)链,编码链(coding strand),有意义链(sense strand):与模板链互补的那条DNA链,称非模板链。不对称转录(asymmetric transcription):因为RNA的转录只在DNA的任一条链上进行,所以把RNA的合成叫做不对称转录。启动子(promoter):DNA链上能指示RNA转录起始的DNA序列称启动子。转录单位(transcription unit):RNA的转录只在DNA的一个片段上进行,这段DNA序列叫转录单位。内含子(intron):真核生物基因中,不为蛋白质编码的、在mRNA加工过程中消失的DNA序列,称内含子。
23、外显子(exon):真核生物基因中,在mRNA上出现并代表蛋白质的DNA序列,叫外显子。转录加工(post-transcriptional processing):细菌中很多RNA分子和几乎全部真核生物的RNA在合成后都需要不同程度的加工,才能形成成熟的RNA分子,这个过程叫转录后加工。核内不均一RNA(hnRNA):是真核生物细胞核内的mRNA前体分子,分子量较大,并且不均一,含有许多内含子。 RNA的复制(RNA replication):某些病毒RNA既可以做为模板合成病毒蛋白质又可在 RNA复制酶(RNA replicase)的催化下,以自身RNA为模板,合成互补的RNA新链,合成方向
24、5'3,这一过程叫RNA复制。cDNA与cccDNA:cDNA是由mRNA通过反转录酶合成的双链DNA;cccDNA是游离于染色体之外的质粒双链闭合环形DNA。 标准折叠单位:蛋白质二级结构单元螺旋与折叠通过各种连接多肽可以组成特殊几何排列的结构块,此种确定的折叠类型通常称为超二级结构。几乎所有的三级结构都可以用这些折叠类型,乃至他们的组合型来予以描述,因此又将其称为标准折叠单位。 CAP:环腺苷酸(cAMP)受体蛋白CRP(cAMP receptor protein ),cAMP与CRP结合后所形成的复合物称激活蛋白CAP(cAMP activated protein ) 回文序列:
25、DNA片段上的一段所具有的反向互补序列,常是限制性酶切位点。 micRNA:互补干扰RNA或称反义RNA,与mRNA序列互补,可抑制mRNA的翻译。 核酶:具有催化活性的RNA,在RNA的剪接加工过程中起到自我催化的作用。 模体:蛋白质分子空间结构中存在着某些立体形状和拓扑结构颇为类似的局部区域 信号肽:在蛋白质合成过程中N端有1536个氨基酸残基的肽段,引导蛋白质的跨膜。 弱化子:在操纵区与结构基因之间的一段可以终止转录作用的核苷酸序列。 魔斑:当细菌生长过程中,遇到氨基酸全面缺乏时,细菌将会产生一个应急反应,停止全部基因的表达。产生这一应急反应的信号是鸟苷四磷酸(ppGpp)和鸟苷五磷酸(
26、pppGpp)。PpGpp与pppGpp的作用不只是一个或几个操纵子,而是影响一大批,所以称他们是超级调控子或称为魔斑。 上游启动子元件:是指对启动子的活性起到一种调节作用的DNA序列,-10区的TATA、-35区的TGACA及增强子,弱化子等。 DNA探针:是带有标记的一段已知序列DNA,用以检测未知序列、筛选目的基因等方面广泛应用。 SD序列:是核糖体与mRNA结合序列,对翻译起到调控作用。 单克隆抗体:只针对单一抗原决定簇起作用的抗体。 考斯质粒:是经过人工构建的一种外源DNA载体,保留噬菌体两端的COS区,与质粒连接构成。 蓝-白斑筛选:含LacZ基因(编码半乳糖苷酶)该酶能分解生色底
27、物X-gal(5-溴-4-氯-3-吲哚-D-半乳糖苷)产生蓝色,从而使菌株变蓝。当外源DNA插入后,LacZ基因不能表达,菌株呈白色,以此来筛选重组细菌。称之为蓝-白斑筛选。 顺式作用元件:在DNA中一段特殊的碱基序列,对基因的表达起到调控作用的基因元件。 Klenow酶:DNA聚合酶I大片段,只是从DNA聚合酶I全酶中去除了5 3外切酶活性 锚定PCR:用于扩增已知一端序列的目的DNA。在未知序列一端加上一段多聚dG的尾巴,然后分别用多聚dC和已知的序列作为引物进行PCR扩增。 融合蛋白:真核蛋白的基因与外源基因连接,同时表达翻译出的原基因蛋白与外源蛋白结合在一起所组成的蛋白质。 一、乳糖操
28、纵子的作用机制?答:1、乳糖操纵子的组成:大肠杆菌乳糖操纵子含Z、Y、A三个结构基因,分别编码半乳糖苷酶、透酶和半乳糖苷乙酰转移酶,此外还有一个操纵序列O,一个启动子P和一个调节基因I。2、阻遏蛋白的负性调节:没有乳糖存在时,I基因编码的阻遏蛋白结合于操纵序列O处,乳糖操纵子处于阻遏状态,不能合成分解乳糖的三种酶;有乳糖存在时,乳糖作为诱导物诱导阻遏蛋白变构,不能结合于操纵序列,乳糖操纵子被诱导开放合成分解乳糖的三种酶。所以,乳糖操纵子的这种调控机制为可诱导的负调控。3、CAP的正性调节:在启动子上游有CAP结合位点,当大肠杆菌从以葡萄糖为碳源的环境转变为以乳糖为碳源的环境时,cAMP浓度升高
29、,与CAP结合,使CAP发生变构,CAP结合于乳糖操纵子启动序列附近的CAP结合位点,激活RNA聚合酶活性,促进结构基因转录,调节蛋白结合于操纵子后促进结构基因的转录,对乳糖操纵子实行正调控,加速合成分解乳糖的三种酶。4、协调调节:乳糖操纵子中的I基因编码的阻遏蛋白的负调控与CAP的正调控两种机制,互相协调、互相制约。二、真核生物转录水平的调控机制?答:真核生物在转录水平的调控主要是通过反式作用因子、顺式作用元件和RNA聚合酶的相互作用来完成的,主要是反式作用因子结合顺式作用元件后影响转录起始复合物的形成过程。1、转录起始复合物的形成:真核生物RNA聚合酶识别的是由通用转录因子与DNA形成的蛋
30、白质-DNA复合物,只有当一个或多个转录因子结合到DNA上,形成有功能的启动子,才能被RNA聚合酶所识别并结合。转录起始复合物的形成过程为:TFD结合TATA盒;RNA聚合酶识别并结合TFD-DNA复合物形成一个闭合的复合物;其他转录因子与RNA聚合酶结合形成一个开放复合物。在这个过程中,反式作用因子的作用是:促进或抑制TFD与TATA盒结合;促进或抑制RNA聚合酶与TFD-DNA复合物的结合;促进或抑制转录起始复合物的形成。2、反式作用因子:一般具有三个功能域(DNA识别结合域、转录活性域和结合其他蛋白结合域);能识别并结合上游调控区中的顺式作用元件;对基因的表达有正性或负性调控作用。3、转
31、录起始的调控:反式作用因子的活性调节:表达式调节反式作用因子合成出来就具有活性;共价修饰磷酸化和去磷酸化,糖基化;配体结合许多激素受体是反式作用因子;蛋白质与蛋白质相互作用蛋白质与蛋白质复合物的解离与形成。反式作用因子与顺式作用元件的结合:反式作用因子被激活后,即可识别并结合上游启动子元件和增强子中的保守性序列,对基因转录起调节作用。反式作用因子的作用方式成环、扭曲、滑动、Oozing。反式作用因子的组合式调控作用:每一种反式作用因子结合顺式作用元件后虽然可以发挥促进或抑制作用,但反式作用因子对基因调控不是由单一因子完成的而是几种因子组合发挥特定的作用。三、真核生物转录后水平的调控机制?答:(
32、1)、5,端加帽和3,端多聚腺苷酸化的调控意义:5,端加帽和3,端多聚腺苷酸化是保持mRNA稳定的一个重要因素,它至少保证mRNA在转录过程中不被降解。(2)、mRNA选择性剪接对基因表达调控的作用(3)、mRNA运输的控制四、分子克隆中常用的工具酶及良好载体的条件?答:(1)、常用的工具酶1限制性核酸内切酶:是细菌产生的一类能识别和切割双链DNA分子内特定的碱基顺序的核酸水解酶。2,DNA连接酶:将两段DNA分子拼接起来的酶。3DNA聚合酶:催化单核苷酸链延伸。4逆转录酶:依赖于RNA的DNA聚合酶,这是一种有效的转录RNA成为DNA的酶,产物DNA又称互补DNA。5末端脱氧核糖核酸转移酶:
33、将脱氧核糖核酸加到DNA的3末端。6碱性磷酸酶:催化去除DNA、RNA等的5磷酸基团。7依赖DNA的RNA聚合酶:识别特异性启动子,RNA转录。(2)、良好载体的条件1、必须有自身的复制子;2、载体分子上必须有限制性核酸内切酶的酶切位点,即多克隆位点,以供外源DNA插入;3、载体应具有可供选择的遗传标志,以区别阳性重组子和阴性重组子;4、载体分子必须有足够的容量;5、可通过特定的方法导入细胞;6、对于表达载体还应具备与宿主细胞相适应的启动子、前导顺序、增强子、加尾信号等DNA调控元件。五、蓝-白筛选的原理?答:某些质粒带有大肠杆菌的半乳糖苷酶基因片段,在半乳糖苷酶基因的基因区外又另外引入了一段
34、含多种单一限制酶位点的DNA序列。这些位点上如果没有克隆外源性DNA片段,在质粒被导入lac-的大肠杆菌后,质粒携带的半乳糖苷酶基因将正常表达,与大肠杆菌的半乳糖苷酶基因互补,产生有活性的半乳糖苷酶,加入人工底物X-gal和诱导剂IPTG后,出现蓝色的菌落。如果在多克隆位点上插入外源DNA片段,将使lac Z基因灭活,不能生成半乳糖苷酶,结果菌落出现白色。由于这种颜色标志,重组克隆和非重组克隆的区分一目了然。六、探针的种类和优缺点?答:1、cDNA探针:通过逆转录获得cDNA后,将其克隆于适当的克隆载体,通过扩增重组质粒而使cDNA得到大量的扩增。提取质粒后分离纯化作为探针使用。它是目前应用最
35、为广泛的一种探针2、基因组探针:从基因组文库里筛选得到一个特定的基因或基因片段的克隆后,大量扩增、纯化,切取插入片段,分离纯化为探针3、寡核苷酸探针:根据已知的核酸顺序,采用DNA合成仪合成一定长度的寡核苷酸片段作为探针。4、RNA探针:采用基因克隆和体外转录的方法可以得到RNA或反义RNA作为探针。七、PCR的基本原理?答:PCR是在试管中进行的DNA复制反应,基本原理是依据细胞内DNA半保留复制的机理,以及体外DNA分子于不同温度下双链和单链可以互相转变的性质,人为地控制体外合成系统的温度,以促使双链DNA变成单链,单链DNA与人工合成的引物退火,然后耐热DNA聚合酶以dNTP为原料使引物
36、沿着单链模板延伸为双链DNA。PCR全过程每一步的转换是通过温度的改变来控制的。需要重复进行DNA模板解链、引物与模板DNA结合、DNA聚合酶催化新生DNA的合成,即高温变性、低温退火、中温延伸个步骤构成PCR反应的一个循环,此循环的反复进行,就可使目的DNA得以迅速扩增。DNA模板变性:模板双链DNA?单链DNA,94。退火:引物单链DNA?杂交链,引物的Tm值。引物的延伸:温度至70 左右, Taq DNA聚合酶以种dNTP为原料,以目的DNA为模板,催化以引物末端为起点的53DNA链延伸反应,形成新生DNA链。新合成的引物延伸链经过变性后又可作为下一轮循环反应的模板PCR,就是如此反复循
37、环,使目的DNA得到高效快速扩增。八、转基因动物的概念、原理及应用?答:1、概念:是指用人工方法将外源基因导入或整合到基因组内,并能稳定传代的一类动物。它的特点是“分子及细胞水平操作,组织及动物整体水平表达”2、基本原理:将目的基因或基因组片段用显微注射等方法注入实验动物的受精卵或着床前的胚胎细胞中,使目的基因整合到基因组中,然后将此受精卵或着床前的胚胎细胞再植入受体动物的输卵管或子宫中,使其发育成携带有外源基因的转基因动物,人们可以通过分析转基因和动物表型的关系,揭示外源基因的功能;也可以通过转入外源基因培育优良的动物品种3、应用:建立用于研究外源基因表达调控体系;建立医学中常用的疾病模型;
38、培育动物新品种;药理学和药用蛋白的生产研究。九、基因敲除的基本程序?答:通过DNA同源重组,使得胚胎干细胞特定的内源基因被破坏而造成功能丧失,然后通过胚胎干细胞介导得到该基因丧失的小鼠模型的过程称为基因敲除。1打靶载体的构建:同源序列要足够长,要含有筛选用的标志基因。2胚胎干细胞的体外培养3打靶载体导入胚胎干细胞4同源重组胚胎干细胞的筛选5、基因敲除胚胎干细胞注射入胚泡6胚泡植入假孕小鼠的子宫中7杂交育种获得纯合的基因敲除动物十、突变类型及其遗传效应?答:1、突变类型:点突变:DNA大分子上一个碱基的变异。分为转换和颠换。缺失:一个碱基或一段核苷酸链从DNA大分子上消失。插入:一个原来没有的碱
39、基或一段原来没有的核苷酸链插入到DNA大分子中间。倒位:DNA链内重组,使其中一段方向倒置。2、突变的遗传效应:遗传密码的改变:错义突变、无义突变、同义突变、移码突变对mRNA剪接的影响:一是使原来的剪接位点消失;二是产生新的剪接位点。蛋白质肽链中的片段缺失:十一、参与蛋白质生物合成体系的组分有哪些?它们具有什么功能?mRNA:蛋白质合成的模板;tRNA:蛋白质合成的氨基酸运载工具;核糖体:蛋白质合成的场所;辅助因子:(a)起始因子-参与蛋白质合成起始复合物形成;(b)延长因子-肽链的延伸作用;(c)释放因子一-终止肽链合成并从核糖体上释放出来。十二、遗传密码有什么特点?(1)密码无标点:从起
40、始密码始到终止密码止,需连续阅读,不可中断。增加或删除某个核苷酸会发生移码突变。(2)密码不重叠:组成一个密码的三个核苷酸只代表一个氨基酸,只使用一次,不重叠使用。(3)密码的简并性:在密码子表中,除Met、Trp各对应一个密码外,其余氨基酸均有两个以上的密码,对保持生物遗传的稳定性具有重要意义 (4)变偶假说:密码的专一性主要由头两位碱基决定,第三位碱基重要性不大,因此在与反密码子的相互作用中具有一定的灵活性 (5)通用性及例外:地球上的一切生物都使用同一套遗传密码,但近年来已发现某些个别例外现象,如某些哺乳动物线粒体中的UGA不是终止密码而是色氨酸密码子(6)起始密码子AUG,同时也代表M
41、et,终止密码子UAA、UAG、UGA使用频率不同。十三、氨基酸在蛋白质合成过程中是怎样被活化的? 催化氨基酸活化的酶称氨酰-tRNA合成酶,形成氨酰-tRNA,反应分两步进行:(1)活化 需Mg2+和Mn2+,由ATP供能,由合成酶催化,生成氨基酸-AMP-酶复合物 (2)转移 在合成酶催化下将氨基酸从氨基酸AMP酶复合物上转移到相应的tRNA上,形成氨酰-tRNA。 十四、简述蛋白质生物合成过程。蛋白质合成可分四个步骤,以大肠杆菌为例: (1)氨基酸的活化:游离的氨基酸必须经过活化以获得能量才能参与蛋白质合成,由氨酰-tRNA合成酶催化,消耗1分子ATP,形成氨酰-tRNA。(2)肽链合成
42、的起始:由起始因子参与,mRNA与30S小亚基、50S大亚基及起始甲酰甲硫氨酰-tRNA(fMet-tRNAt)形成70S起始复合物,整个过程需GTP水解提供能量(3)肽链的延长:起始复合物形成后肽链即开始延长。首先氨酰-tRNA结合到核糖体的A位,然后,由肽酰转移酶催化与P位的起始氨基酸或肽酰基形成肽键,tRNAf或空载tRNA仍留在P位最后核糖体沿mRNA53方向移动一个密码子距离,A位上的延长一个氨基酸单位的肽酰-tRNA转移到P位,全部过程需延伸因子EF-Tu、EF-Ts,能量由GTP提供(4)肽链合成终止,当核糖体移至终止密码UAA、UAG或UGA时,终止因子RF-1、RF-2识别终
43、止密码,并使肽酰转移酶活性转为水解作用,将P位肽酰-tRNA水解,释放肽链,合成终止。十五、蛋白质合成中如何保证其翻译的正确性?(1)氨基酸与tRNA的专一结合,保证了tRNA携带正确的氨基酸;(2)携带氨基酸的tRNA对mRNA的识别,mRNA上的密码子与tRNA上的反密码子的相互识别,保证了遗传信息准确无误地转译;(3)起始因子及延长因子的作用,起始因子保证了只有起始氨酰-tRNA能进入核糖体P位与起始密码子结合,延伸因子的高度专一性,保证了起始tRNA携带的fMet不进入肽链内部;(4)核糖体三位点模型的E位与A位的相互影响,可以防止不正确的氨酰-tRNA进入A位,从而提高翻译的正确性;
44、(5)校正作用:氨酰-tRNA合成酶和tRNA的校正作用;对占据核糖体A位的氨酰-tRNA的校对;变异校对即基因内校对与基因间校对等多种校正作用可以保证翻译的正确。十六、原核细胞和真核细胞在合成蛋白质的起始过程有什么区别。(1)起始因子不同:原核为IF-1,IF-2,IF-2,真核起始因子达十几种。(2)起始氨酰-tRNA不同:原核为fMet-tRNAf,真核Met-tRNAi(3)核糖体不同:原核为70S核粒体,可分为30S和50S两种亚基,真核为80S核糖体,分40S和60S两种亚基十七、已知一种突变的噬菌体蛋白是由于单个核苷酸插入引起的移码突变的,将正常的蛋白质和突变体蛋白质用胰蛋白酶消
45、化后,进行指纹图分析。结果发现只有一个肽段的差异,测得其基酸顺序如下: 正常肽段 Met-Val-Cys-Val-Arg 突变体肽段 Met-Ala-Met-Arg(1)什么核苷酸插入到什么地方导致了氨基酸顺序的改变?(2)推导出编码正常肽段和突变体肽段的核苷酸序列. 提示:有关氨基酸的简并密码分别为 Val: GUU GUC GUA GUG Arg: CGU CGC CGA CG AGA AGG Cys: UGU UGC Ala: GCU GCC GCA CGC(1)在正常肽段的第一个Val的密码GUA的G后插入了一个C ;(2) 正常肽段的核苷酸序列为:AUG GUA UGC GU CG;
46、突变体肽段的核苷酸序列为:AUG GCU AUG CGU 。十八、 试比较原核生物与真核生物的翻译。原核生物与真核生物的翻译比较如下:仅述真核生物的,原核生物与此相反。(1).起始Met不需甲酰化;(2).无SD序列,但需要一个扫描过程;(3).tRNA先于mRNA与核糖体小亚基结合;(4).起始因子比较多;(5).只一个终止释放因子。十九、试述Meselson和Stahl关于DNA半保留复制的证明实验。提示:将Ecoli放入以15NH4Cl为唯一氮源的培养基中连续培养十几代,使所有DNA分子标记上15N;将15N标记的Ecoli再放入普通的14N培养基中培养,在细胞生长一代、二代 、 、n代
47、的时间间隔内采样;采用氯化铯密度梯度离心分离DNA,并用紫外照相技术检测DNA所在位置;结果如下:其结果确切地证明DNA以半保留方式复制。二十、什么是逆转录?病毒中的单链RNA如何利用逆转录酶合成双链DNA,并整合到寄主细胞的基因组中?见名词解释“逆转录”。病毒的单链RNA在病毒进入寄主细胞后被释放出来,此 RNA带有与模板互补的tRNA引物,病毒的逆转录酶以此RNA为模板,从引物的3-OH端,按碱基互补原则以5 3方向合成DNA链(-),形成RNADNA杂交分子,然后逆转酶发挥 RNA水解酶活性,水解杂交分子中的RNA链,最后以新合成的DNA链(-)为模板,合成另一条 DNA链(+),形成双
48、链DNA分子(为病毒)整合到寄主基因组中,随寄主细胞的转录,产生病毒 RNA(+),此RNA可翻译病毒蛋白质,可作为后代病毒RNA。二十一、DNA的损伤原因是什么?自身复制过程中发生的错误:外界环境的影响,如物理因素(紫外线、X一射线辐射等),化学因素(各种诱变剂、抗菌素等)。造成嘧啶碱基形成聚合体,发生碱基错配、缺失和插入。二十二、试比较转录与复制的区别。目的不同,所使用的酶、原料及其它辅助因子不同,转录是合成RNA,复制是合成DNA;方式不同:转录是不对称的,只在双链DNA的一条链上进行,只以DNA的一条链为模板,复制为半不连续的,分别以DNA的两条链为模板,在DNA的两条链上进行;复制需
49、要引物,转录不需要引物;复制过程存在校正机制,转录过程则没有;转录产物需要加工,复制产物不需要加工;复制与转录都经历起始、延长、终止阶段,都以DNA为模板,新链按碱基互补原则,5'3方向合成。二十三、简述原核生物转录作用的过程。原核生物转录作用的过程:结合(binding) : 与RNA pol结合,大大降低了后者与DNA链的非特异性结合,而到了正确的promoter处,其亲和力提高了100倍;解旋(unwinding): RNA pol将使约17bp的DNA解螺旋,形成一个open complex ;起始(initiation): RNA pol合成8-10个nt ,因子被释放;延长
50、(elongation): 形成一个转录泡,开始延长;终止(termination): (1) 不依赖于蛋白的terminator形成一个大发夹,在新合成 RNA中其后有一段寡聚U,导致转录终止,RNA pol被释放;(2)依赖于蛋白的terminator也形成一个发夹,但由于没有长段U,所以需要蛋白帮助,终止RNA合成。二十四、试比较真核生物与原核生物mRNA转录的主要区别。真核生物与原核生物mRNA转录的比较如下:原核生物:操纵子 RNA聚合酶 核心酶加因子 不需加工与翻译相偶联 类核真核生物:单基因 RNA聚合酶 聚合酶加转录因子 需加工故与翻译相分离 核内分别说出5种以上RNA的功能? 转运RNA tRNA 转运氨基酸 核蛋白体RNA rRNA 核蛋白体组成成 信使RNA mRNA 蛋白质合成模板 不均一核RNA hnRNA 成熟mRNA的前体 小核RNA snRNA 参与hnRNA的剪接 小胞浆RNA scRNA/7SL-RNA 蛋白质内质网定位合成的信号识别体的组成成分 反义RNA anRNA/micRNA 对基因的表达起调节作用 核 酶 Ribozyme RNA 有酶活性的RNA 二十五、基因文库的构建对重组子的筛选举出3种方法并
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年音乐教师资格考试卷及答案
- 2025年社会工作与社会福利专业试卷及答案
- 2025年社会工作实务课程考试试卷及答案
- 2025年房地产经营管理考试试卷及答案
- 2025年机械设计基础试题及答案
- 2025年教师资格证考试试卷及答案
- 石料加工销售合同协议书
- 七级书法考试试题及答案
- 餐饮房租租赁合同协议书
- 2025年节能型泵及环保用泵项目合作计划书
- 电网工程设备材料信息参考价2025年第一季度
- 江苏南京茉莉环境投资有限公司招聘笔试题库2025
- 吸氧并发症预防及处理
- 针刺伤预防与处理(中华护理学会团体标准)
- 2024年安徽省初中学业水平考试生物试题含答案
- 2024年浙江省中考英语试题卷(含答案解析)
- MOOC 理解马克思-南京大学 中国大学慕课答案
- 说明书hid500系列变频调速器使用说明书s1.1(1)
- RTO处理工艺PFD计算
- 最美中铝人申报表
- 柑橘采摘机器人的结构设计说明书
评论
0/150
提交评论