




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第五届全国大学生数学竞赛预赛试卷(非数学类)一、 解答下列各题(每小题6分共24分,要求写出重要步骤)1.求极限.解 因为(2分);原式(2分);(2分)2.证明广义积分不是绝对收敛的解 记,只要证明发散即可。(2分)因为。(2分)而发散,故由比较判别法发散。(2分)3.设函数由确定,求的极值。解 方程两边对求导,得 (1分)故,令,得或(2分)将代入所给方程得,将代入所给方程得,(2分)又,故为极大值,为极小值。(3分) 4.过曲线上的点A作切线,使该切线与曲线及轴所围成的平面图形的面积为,求点A的坐标。解 设切点A的坐标为,曲线过A点的切线方程为(2分);令,由切线方程得切线与轴交点的横坐
2、标为。从而作图可知,所求平面图形的面积,故A点的坐标为。(4分)二、(满分12)计算定积分解 (4分) (2分)(4分) (2分)三、(满分12分)设在处存在二阶导数,且。证明 :级数收敛。解 由于在处可导必连续,由得 (2分) (2分)由洛必塔法则及定义 (3分)所以 (2分)由于级数收敛,从而由比较判别法的极限形式收敛。(3分)四、(满分12分)设,证明解 因为,所以在上严格单调增,从而有反函数(2分)。设是的反函数,则 (3分)又,则,所以(3分) (2分)五、(满分14分)设是一个光滑封闭曲面,方向朝外。给定第二型的曲面积分。试确定曲面,使积分I的值最小,并求该最小值。解 记围成的立体
3、为V,由高斯公式 (3分)为了使得I的值最小,就要求V是使得的最大空间区域,即取 ,曲面 (3分) 为求最小值,作变换,则,从而 (4分)使用球坐标计算,得 (4分)六、(满分14分)设,其中为常数,曲线C为椭圆,取正向。求极限解 作变换(观察发现或用线性代数里正交变换化二次型的方法),曲线C变为平面上的椭圆(实现了简化积分曲线),也是取正向 (2分)而且(被积表达式没变,同样简单!), (2分)曲线参数化,则有, (3分)令,则由于,从而。因此当时或时(2分) 而 (3分) 。故所求极限为 (2分)七(满分14分)判断级数的敛散性,若收敛,求其和。解 (1)记因为充分大时 (3分)所以,而收敛,故收敛(2分)(2)记 ,则= (2分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 课题申报书:依据常住人口规模动态配置义务教育财政资源的优化路径研究
- 高性能复合材料研究-第1篇-全面剖析
- 课题申报书:学习科学视角下教师教学创新研究
- 制冷设备用压缩机企业ESG实践与创新战略研究报告
- 课题申报书:新时代师德师风建设研究
- 2024年宿州砀山县招聘幼儿园教师笔试真题
- 2024年栖霞市考选毕业生笔试真题
- 2024年广西物流职业技术学院才招聘笔试真题
- 高精度手势识别算法-全面剖析
- 浙江省台州市山海协作体2023-2024学年高二下学期期中考试历史试题(解析版)
- 人教版小学二年级上册数学 期中测试卷
- (二模)湛江市2025年普通高考测试(二)政治试卷(含答案)
- 给梦一个奔跑的方向-“距离梦想大学有多远”-高中热点大观园
- 防空掩体知识培训课件
- 工业和信息化部产业发展促进中心招聘笔试真题2024
- 2025年江西上饶铅山城投控股集团有限公司招聘笔试参考题库附带答案详解
- 模拟雨的形成课件
- 多维数据循环嵌套分析-全面剖析
- 数学全等三角形教学设计 2024-2025学年北师大版数学七年级下册
- 桥梁水下结构内部缺陷超声波检测基于技术
- 银证合作产品营销手册
评论
0/150
提交评论