




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 立体几何最值问题 姓名 立体几何主要研究空间中点、线、面之间的位置关系,与空间图形有关的线段、角、体积等最值问题常常在试题中出现。下面举例说明解决这类问题的常用方法。一、运用变量的相对性求最值例1. 在正四棱锥S-ABCD中,SO平面ABCD于O,SO=2,底面边长为,点P、Q分别在线段BD、SC上移动,则P、Q两点的最短距离为( )A. B. C. 2D. 1二、定性分析法求最值例2. 已知平面/平面,AB和CD是夹在平面、之间的两条线段。ABCD,AB=3,直线AB与平面成30°角,则线段CD的长的最小值为_。三、展成平面求最值例3. 如图3-1,四面体A-BCD的各面都是锐角
2、三角形,且AB=CD=a,AC=BD=b,AD=BC=c。平面分别截棱AB、BC、CD、DA于点P、Q、R、S,则四边形PQRS的周长的最小值是( )A. 2aB. 2bC. 2cD. a+b+c图3-1四、利用向量求最值例4. 在棱长为1的正方体ABCD-EFGH中,P是AF上的动点,则GP+PB的最小值为_。一、线段长度最短或截面周长最小问题例1. 正三棱柱ABCA1B1C1中,各棱长均为2,M为AA1中点,N为BC的中点,则在棱柱的表面上从点M到点N的最短距离是多少?并求之.例2.如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直。点M在AC上移动,点N在BF
3、上移动,若CM=BN=(1)求MN的长;(2)当为何值时,MN的长最小; (3)当MN长最小时,求面MNA与面MNB所成的二面角的大小。例3. 如图,边长均为a的正方形ABCD、ABEF所在的平面所成的角为。点M在AC上,点N在BF上,若AM=FN ,(1)求证:MN/面BCE ; (2)求证:MNAB; (3)求MN的最小值.例4.正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直。点M在AC上移动,点N在BF上移动,若CM=x ,BN=y, (1)求MN的长(用x,y表示);(2)求MN长的最小值,该最小值是否是异面直线AC,BF之间的距离。例5. 如图,在ABC中,
4、ACB90°,BCa,ACb,D是斜边AB上的点,以CD为棱把它折成直二面角ACDB后,D在怎样的位置时,AB为最小,最小值是多少?例6. 正三棱锥A-BCD,底面边长为a,侧棱为2a,过点B作与侧棱AC、AD相交的截面,在这样的截面三角形中,求(1)周长的最小值;(2)周长为最小时截面积的值,(3)用这周长最小时的截面截得的小三棱锥的体积与三棱锥体积之比.二、面积最值问题例7. 如图1所示,边长AC3,BC4,AB5的三角形简易遮阳棚,其A、B是地面上南北方向两个定点,正西方向射出的太阳光线与地面成30°角,试问:遮阳棚ABC与地面成多大角度时,才能保证所遮影面ABD面积
5、最大?例8. 在三棱锥ABCD中,ABC和BCD都是边长为a的正三角形,二面角ABCD,问为何值时,三棱锥的全面积最大。例9、一个圆锥轴截面的顶角为1200,母线为1,过顶点作圆锥的截面中,最大截面面积为 。例10、圆柱轴截面的周长L为定值,求圆柱侧面积的最大值。ABCDD1A1C1B1EFG例11、在棱长为1的正方体ABCDABCD中,若G、E分别是BB1、C1D1的中点,点F是正方形ADD1A1的中心。则四边形BGEF在正方体侧面及底面共6个面内的射影图形面积的最大值是 。三、体积最值问题例12. 如图,过半径为R的球面上一点P作三条两两垂直的弦PA、PB、PC,(1)求证:PA2+PB2
6、+PC2为定值;(2)求三棱锥PABC的体积的最大值.评析:定值问题可用特殊情况先“探求”,如本题(1)若先考虑PAB是大圆,探求得定值4R2可为(1)的证明指明方向.球面上任一点对球的直径所张的角等于90°,这应记作很重要的性质.四、角度最值问题。例13. 在棱长为1的正方体ABCDA1B1C1D1中,P是A1B1上的一动点,平面PAD1和平面PBC1与对角面ABC1D1所成的二面角的平面角分别为、,试求+的最大值和最小值. “动态”立体几何题初探本文所指的“动态”立体几何题,是指立体几何题中除了固定不变的的线线、线面、面面关系外,渗透了一些“动态”的点、线、面元素,给静态的立体几
7、何题赋予了活力,题意更新颖,同时,由于“动态”的存在,也使立体几何题更趋灵活,加强了对学生空间想象能力的考查。一、 截面问题截面问题是立体几何题中的一类比较常见的题型,由于截面的“动态”性,使截得的结果也具有一定的可变性。例1、已知正三棱柱A1B1C1ABC的底面积为S,高为h,过C点作三棱柱的与底面ABC成角的截面MNC,(0<),使MN/AB,求截面的面积。 二、 翻折、展开问题图形的翻折和展开必然会引起部分元素位置关系的变化,求解这类问题要注意对变化前后线线、线面位置关系、所成角及距离等加以比较,一般来说,位于棱的两侧的同一半平面内的元素其相对位置关系和数量关系在翻折前后不发生变化
8、,分别位于两个半平面内的元素其相对关系和数量关系则发生变化。不变量可结全原图型求解,变化了的量应在折后立体图形中来求证。例2、下图表示一个正方体的展开图,图中AB、CD、EF、GH这四条直线在原正方体中相互异面的有( )A 2对B 3对C 4对D 5对FEHGCDBA例3、从三棱锥PABC的顶点沿着三条侧棱PA、PB、PC剪开,成平面图形,得到P1P2P3,且P1P2=P2P3;三、 最值问题立体几何题中经常会涉及到角度、距离、面积、体积最大值、最小值的计算,很多情况下,我们可以把这类动态问题转化成目标函数,从而利用代数方法求目标函数的最值。例4、(2002年全国高考)如图,正方形ABCD、A
9、BEF的边长都是1,而且平面ABCD、ABEF互相垂直,点M在AC上移动,点N在BF上移动,若CM=BN=a,(0<a<).()求MN的长;()当a为何值时,MN的长最小;例6、圆柱轴截面的周长L为定值,求圆柱侧面积的最大值。四、 探索型问题由于立体几何题中“动态”性的存在,使有些问题的结果变得不可确定,探索型问题正好通过这种“动态性”和不确定性考查学生的发散性思维。例7、已知矩形ABCD,PA平面AC于点A,M,N分别是AB、PC的中点,(1)求证MNAB;(2)若平面PDC与平面ABCD所成的二面角为,能否确定,使得直线MN是异面直线AB与PC的公垂线?若能确定,求出的值,若不
10、能确定,说明理由。例8、如图,ABC是正三角形,AD和CE都平面ABC,且AD=AB=1,CE=1/2,问:能否在线段BD上找到一点F,使AF平面BDE?五、 其它类型利用三垂线定理、射影定理、线线、线面垂直的性质等在动态问题中提炼一些不变的、“静态”的量,从而达到解题的目的。例9、在三棱柱ABCA1B1C1中,AA1=AB=AC,ABAC,M是CC1的中点,Q是BC的中点,点P在A1B1上,则直线PQ与直线AM所成的角等于( )A 300B 450C 600D 900例10、正方体ABCDA1B1C1D1中,点P在侧面BCC1B1及其边界运动,并且总保持APBD1,则动点P的轨迹是 。 AB
11、CDD1A1C1B1EFG例11、在棱长为1的正方体ABCDABCD中,若G、E分别是BB1、C1D1的中点,点F是正方形ADD1A1的中心。则四边形BGEF在正方体侧面及底面共6个面内的射影图形面积的最大值是 。 “动态”立体几何题面面观本文所指的“动态”立体几何题,是指立体几何题中除了固定不变的的线线、线面、面面关系外,渗透了一些“动态”的点、线、面元素,给静态的立体几何题赋予了活力,题意更新颖,同时,由于“动态”的存在,也使立体几何题更趋灵活,加强了对学生空间想象能力的考查。一定值问题例1 如图在棱长为a的正方体中,EF是棱AB上一条线段,且EFba,若Q是上的定点,P在上滑
12、动,则四面体PQEF的体积( )(A)是变量且有最大值 (B)是变量且有最小值 (C)是变量无最大最小值 (D)是常量分析:此题的解决需要我们仔细分析图形的特点这个图形有很多不确定因素,线段EF的位置不定,点P在滑动,但在这一系列的变化中是否可以发现其中的稳定因素?求四面体的体积要具备哪些条件?仔细观察图形,应该以哪个面为底面?观察,我们发现它的形状位置是要变化的,但是底边EF是定值,且P到EF的距离也是定值,故它的面积是定值再发现点Q到面PEF的距离也是定值因此,四面体PQEF的体积是定值我们没有一点计算,对图形的
13、分析帮助我们解决了问题三、范围问题例3。求正三棱锥相邻的两个侧面所成的二面角大小的取值范围。分析:因为这个正三棱锥是动态的,无法作出相邻的两个侧面所成的二面角的平面角,故不能通过正常的途径算出其范围,既然是动态的图形,我们则可以从图形的极限思想出发思考这个问题。四、截面问题例4、已知正三棱柱A1B1C1ABC的底面积为S,高为h,过C点作三棱柱的与底面ABC成角的截面MNC,(0<),使MN/AB,求截面的面积。五、 翻折、展开问题例5 给出任意的一块三角形纸片,要求剪拼成一个直三棱柱模型,使它的全面积与给出的三角形的面积相等,请设计一种方案,并加以简要的说明例6. 正三棱锥
14、A-BCD,底面边长为a,侧棱为2a,过点B作与侧棱AC、AD相交的截面,在这样的截面三角形中,求(1)周长的最小值;(2)周长为最小时截面积的值,(3)用这周长最小时的截面截得的小三棱锥的体积与三棱锥体积之比.评析 把曲面上的最短路线问题利用展开图转化为平面上两点间距离的问题,从而使问题得到解决,这是求曲面上最短路线的一种常用方法.本题中的四面体,其中任何一个面都可以做为底面,因而它可有四个底面和与之对应的四条高,在解决有关三棱锥体积题时,需要灵活运用这个性质.例7 .如图,ABCDEF为正六边形,将此正六边形沿对角线AD折叠.(1)求证:ADEC,且与二面角FADC的大小无关;(2)FC与FE所成的角为30°时,求二面角FADC的余弦值.六、 探索型问题例8.已知BCD中,BCD=90°,BC=CD=1,AB平面BCD,ADB=60°,E、F分别是AC、AD上的动点,且()求证:不论为何值,总有平面BEF平面A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年数据科学与大数据技术考核试卷及答案
- 2025年公路工程项目管理考试题及答案
- 动作题材剧本改编授权及电影制作合同
- 文化创意园区招商运营管理合同
- 绿色建筑项目碳排放总量控制合同
- 跨境艺术品运输综合保险服务协议
- 潜水器材租赁及国际市场拓展服务合同
- 房地产虚拟现实销售培训与市场推广执行合同
- 线上线下融合带货分成协议补充条款
- 婚姻出轨防范与赔偿保障协议书
- 绿化工程施工专项施工方案
- 1.2区域整体性和关联性-以青田县稻鱼共生为例课件-高中地理人教版(2019)选择性必修2
- 2025年上半年能源集团所属辽宁能源煤电产业股份限公司招聘易考易错模拟试题(共500题)试卷后附参考答案
- “5领导作用-5.1领导作用和承诺”专业深度解读与应用指导材料(雷泽佳编制-2025C0)
- 《基于AAO-MBR工艺某县城5万立方米日处理量污水处理厂工程设计》13000字(论文)
- 二零二五年度老旧小区改造房屋联建合作协议3篇
- 新版人教版一年级数学下册第五单元100以内的笔算加减法
- 内控检查报告范文
- 2024届高考生物一轮复习必考重点大全宝典
- 清华大学课程结构与教学模式
- 【MOOC】航空航天材料概论-南京航空航天大学 中国大学慕课MOOC答案
评论
0/150
提交评论