脑电波毕业论文_第1页
脑电波毕业论文_第2页
脑电波毕业论文_第3页
脑电波毕业论文_第4页
脑电波毕业论文_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、摘要脑电图是通过脑电图描记仪将脑自身微弱的生物电放大记录成为一种曲线图,是脑神经电生理活动在大脑皮层或头皮表面的总体反映。脑电信息数据的分析研究是人类对人脑思维研究中一个重要研究方法,通过对人脑脑电波信息的分析研究可以发现许多不为我们所知的结果,也可以解释人类行为的一些现象。本课题研究的主要目的是通过检测和分析由感情变化事件引起愉快和不愉快的情绪时产生在大脑皮层区域之间的波段脑电活动变化,从而得出人脑与情感之间的关系,在得出结果的基础上讨论得到结果的意义,并为脑信息研究提供试验基础和理论依据。本文主要运用主成分分析法对通过实验获取的脑电信号数据进行分析处理。对与感情变化相关的脑电图实验数据中的

2、波段进行过滤,提取波。对波进行主成分分析并提取第一主成分、第二主成分,计算第一主成分、第二主成分的贡献率,然后对EAST程序输出的数据结果进行统计分析。得到的结论有:对于日常生活中习惯用右手的女性来说,波的第一主成分的贡献率越大,愉快的情绪就越强烈;波的第二主成分的贡献率越大,愉快的情绪越少,不愉快的情绪越多。关键词:脑电图 感情 波 主成分分析ABSTRACTEEG is by the EEG plethysmometer the brain itself weak bioelectrical enlarge record become a graph,and brain electroph

3、ysiological activity in the overall surface of the cerebral cortex or scalp.EEG data analysis research human an important research methods in the study of the human brain thinking,some phenomena can be interpreted not as the result of our knowledge,human behavior can be found through the analysis of

4、 the human brain brainwave information.The main purpose of this research is the detection and analysis to produce -band EEG activity changes in the area of the cortex between pleasant and unpleasant emotions caused by the emotional change events,to arrive at the relationship between the human brain

5、and emotions,discussed the significance of the results,and the results on the basis of experimental and theoretical basis for the brain information Studies.In this paper,principal component analysis of EEG data obtained through experiments, analysis and processing.-band associated with emotional cha

6、nges in the EEG experiment data filtering,extracting waves.Principal component analysis of the wave,and extracts the first main component,a second main component,and calculating a first main component,the contribution rate of the second main component,and then the the EAST program output data result

7、s for statistical analysis.To the conclusion:For right-handed women in daily life,the the larger wave contribution rate of the first principal component,the more intense unpleasant emotions;greater the contribution rate wave second principal component the unpleasant emotions fewer,the more unpleasan

8、t emotions.Key words:EEG emotion waves Principal Component Analysis目录第一章研究背景11.1课题研究的目的及意义11.2脑电图的定义及特点11.3脑电图的发现及研究进展21.4脑电图波形介绍31.5脑电波产生的机制4第二章分析方法及使用软件介绍62.1主成分分析方法介绍62.2软件介绍62.2.1关于MATLAB62.2.2关于EAST7第三章脑电图试验83.1脑电图获取方法83.2实验的方法与步骤83.3实验的注意事项9第四章数据分析104.1计算分析数据的流程104.2数据图124.3数据分析15结论16谢辞17参考文献1

9、8第一章研究背景1.1课题研究的目的及意义脑是人体内最重要的器官之一,是接受外界信号、产生感觉和知觉、形成意识、进行逻辑思维并发出指令的中枢。人类之所以能够主宰世界,是因为人脑的高度发达,它是人类智能与高级精神活动的生理基础。人脑为人类提供了知觉、运动、注意、学习、记忆、思维、语言、情感、意识等最重要的高级功能和认知行为,因此认识脑从而认识人类自身已经成为本世纪最具挑战性和最活跃的科学前沿。虽然20世纪70年代和80年代初出现的计算机断层扫描(CT)、核磁共振(MRI)、正电子发射扫描(PET)等现代检测方法的应用使得我们能够从活体和整体水平来研究脑,但是对脑电信号的研究作为一种真正无创伤、高

10、时间分辨率的脑研究方法仍然是脑功能检测和研究的重要手段,并正逐渐成为脑研究领域的热点1。目前,世界许多国家已将脑的研究作为重点资助领域,美国、欧洲和日本相继启动了脑研究计划。人类大脑的各个组成部分彼此的动作是紧密联系、相互支援、相互协调着进行工作的,而并非分工式的工作。为了研究正常状态下正常人的大脑功能的差异,说明大脑两半球功能活动的非对称性,关于反映脑的各局部的脑电波活动情况值得我们进一步研究。在脑部的不同区域发出的是不同频率成分的脑电波,因此对脑的不同部位在不同事件刺激下的情况用主成分分析法进行研究,用脑电图数据定量准确地、科学地对左右脑进行主成分分析,这对更好的认识脑、保护脑、开发脑有十

11、分重要的实际意义。另外,如何利用计算机有效地且可靠地处理大量的脑电图数据也是需要进一步研究的课题。本课题研究的主要目的是通过检测和分析由各种感情事件引起愉快和不愉快的情绪时产生在大脑皮层区域之间的波段脑电活动变化。不同的事件刺激大脑会得出不同的结果,在得出结果的基础上讨论得到结果的意义,为脑电图数据分析以及临床脑电学研究作基础性的分析,从而为研究不同事件下产生的脑电图数据提供坚实的理论基础和科学的实验依据。1.2脑电图的定义及特点脑电图(EEG)是脑神经电生理活动在大脑皮层或头皮表面的总体反映,也就是通过电极记录下来的脑细胞群的自发性、节律性脑电活动,将脑电活动的电位作为纵轴,实验时间序列作为

12、横轴,这样把电位与时间的相互关系记录下来的就是脑电图。脑电图数据是经过客观实验记录所得到的反应脑电活动随时间变化的微小电压值、实验时间序列和实验事件信息等的数据,也就是脑电信号的数据。脑电图按电极放置在头部的位置不同分为头皮脑电图、皮层脑电图及深部脑电图。其中头皮脑电图记录的是大脑神经细胞由于电活动产生的电场经容积(由皮层、颅骨、脑膜及头皮构成)传导后在头皮上的电位分布;记录皮层脑电图比较麻烦,首先通过做开颅手术时将电极放置在大脑皮层然后记录成脑电图;深部脑电图是对皮层下大脑各种内部结构的电活动的记录。本课题研究的脑电图就是常规的头皮脑电图。脑电信号具有以下几个特点:(1)背景噪声强,脑电信号

13、非常微弱。一般EEG信号只有50V左右,最大100V。噪声背景强是指非研究对象的信号在观察中有强烈的表现,例如神经紧张、面部肌肉动作等带来的伪迹、强烈的工频干扰等。(2)脑电信号非平稳性和随机性都很强。随机性强是由于影响它的因素太多,其规律还处于不断认识中,必须借助统计处理技术来检测、辨识和估计它的特征。非平稳是由于构成脑电信号的生理因素始终在变化。(3)非线性。生物组织的调节及适应机能必然影响到电生理信号具有非线性的特点。(4)脑电信号的时域、频域特征比较突出。(5)脑电信号一般都是用多导电极测得的信号,因此在各导联信号之间必然存在着非常重要的互信息。如何有效地揭示这些互信息,突出隐含在多导

14、脑电信号之间的重要特征,是建立和评价脑电信号处理方法的一个重要标准。1.3脑电图的发现及研究进展最先记录并正确地描述人的脑电活动的是Jean大学的精神科教授Hans Berger,他于1924年着手于人的脑电活动的研究。他把两枚白金针电极从患者颅骨缺损部位插向大脑皮质,成功地从人脑记录到规律的电活动。接着他确认了即使不将电极插入大脑皮质,而在头皮上安放电极也可以记录到这样的电活动。他首先把正常人在安静闭眼时主要出现在枕、顶部的10Hz、50V左右的规则的正弦波命名为波;而当受试者睁开眼注视物体时,波就消失,出现1820Hz、2030V的波,把这种波命名为波,并把这样的脑电活动称为脑电图2。Be

15、rger在19241929年间,确认了自己对于人类脑电图方面的发现,此后他发表了关于脑电图的14篇论文,其中对正常人的脑电图以及癫痫、脑肿瘤、其他精神疾病的脑电图等现代脑电图学研究的大部分问题都进行了广泛的观察与记录。但是,在1933年英国的著名生理学家E.D.Adrian(艾德里安)重复了H.Berger的工作并承认了他的成果以后情况有了变化。Adrian在当时设备最完整剑桥大学生理学研究室同B.Mathews一起研究了脑电图,确认了Berger所提出的波和波,并提议将波称为“Berger节律”,但被Berger本人所拒绝。Berger的有关脑电图的研究被Adrian等人所肯定以后,脑电图的

16、研究有了急速的发展,并被推广到全世界范围。脑电图不仅用于研究方面,而且作为诊断癫痫、脑肿瘤及其他精神疾病的有力手段,所起的作用与X线检查、心电图检查一样,成了临床试验的方法之一。在脑电图研究近百年历史上,研究者们一直在探索适合脑电活动分析的方法。虽然20世纪70年代和80年代初涌现出计算机断层扫描(CT)、核磁共振(MRI)等现代检测方法,脑电作为一种非损伤性检测方法仍然是大脑功能检测和研究的重要手段3。目前,国内外有关脑电图这一课题的研究日益增多,研究方法也日益完善,已经有很多方法应用于此。由于技术的限制,最初的脑电图研究方法主要是通过研究者目测完成,利用经验消除伪差和干扰,并根据脑电图波形

17、的幅度、频率和瞬态分布等给出评价和结论。这使得对脑电图的研究停留在主观水平上,这种简单的定性分析很难在复杂多变的脑电图中直接提取具有理论价值和实际应用价值的信息。直到20世纪60、70年代,随着计算机技术的迅猛发展,脑电图的分析研究才进入了计算机分析的阶段。这使得脑电图的定量分析有据可依,定性工作有了定量分析的支持更具有客观性。归结起来,近几十年脑电图的计算机分析研究方法主要有时域分析法、频域分析法、时频分析法及主成分分析方法等。1.4脑电图波形介绍脑部电活动根据不同脑部的状态、功能或病理被分成了不同的频带,由不同频率和振幅的波混合组成。波:波是确定脑电图快慢的基准波,具有10Hz左右即813

18、Hz的频率,在正常成人的顶枕部最明显。在放松和精神不紧张的情况下,他们在正常成年人清醒期间出现。在眼睛闭合时看得最清楚。波:频率约1430Hz,以额叶及中央区最明显。一般波幅不超过30微伏。与波相比较,它们具有较低的幅值,在紧张和焦虑的时候频率有所加强。波:频率约47Hz,在顶叶及颞叶较明显,是儿童觉醒时脑电图的主要成分,成年人觉醒时脑电图无波。波:频率约13Hz,出现在颞叶与枕叶,是婴儿脑电图中的主要节律。觉醒的正常成年人无波,但在深睡时可出现波。其中和波称为漫波,和波称为快波。依年龄不同其基本波的频率也不同,如三岁以下小儿以波为主,三到六岁以波为主,随年龄增长,波逐渐增多,到成年人时以波为

19、主,但年龄之间无明确的严格界限,如有的儿童四,五岁枕部波已很明显。正常成年人在清醒、安静、闭眼时,脑波的基本节律是枕部波为主,其他部位则是以波间有少量慢波为主4。判断脑波是否正常,主要是根据其年龄,对脑波的频率、波幅、两侧的对称性以及慢波的数量、部位、出现方式及有无病理波等进行分析。下面详细介绍与本课题研究相关的波。波为持续时间为1/81/4秒的一种脑电波成分,所以把频率为48HZ的脑电波节律称为节律。它在正常人睡眠时出现,但青年女性有时在觉醒时可看到低振幅的波。儿童在觉醒期间,特别是在不快、沮丧状态或从睡眠中觉醒过来时等情况下也可看到波。波为优势脑波时,人的意识中断,身体深沉放松,这是一种高

20、层次的精神状态,也就是我们常听到的“入定态”。在这样的状态下,由于意识中断使得我们平常清醒时所具有批判性或道德性的过滤机制被埋藏起来,因而大开心灵之门,对于外界的讯息呈现高度的受暗示性状态,这就是为什么人在被催眠时会容易接收外来的指令。此外,波与脑部边缘系统有非常直接的关系,对于触发深层记忆、强化长期记忆等帮助极大,所以,在科学界称波为“通往记忆与学习的闸门”。1.5脑电波产生的机制在人体中,大脑是最复杂的器官。脑的任何部分都与大脑皮层有联系,通过这种联系,把来自各处的信息汇集在大脑皮层进行加工、处理。人脑的表面积大约有2500cm2,脑的平均质量为1400g,脑皮质包含感觉反应区,精确控制身

21、体各部肌肉运动的区域。脑的纵向沟将其分为左右两个半球,左脑感知和支配身体右侧,右脑感知和支配身体左侧。构成脑的最佳估计是约为10000亿个神经和神经胶质细胞,相当于整个银河系星体的总数,其中神经胶质细胞是神经细胞的1050倍,有1000100000种不同类型。这个巨量的群体通过树突、轴突、各类介质和生物电荷以其绝妙的方式互连为一体,形成一个及其复杂的结构,发挥着绝妙的功能。这是人类认识史上所接触的最为复杂的结构。所以,人脑是世界上最复杂的物质,它是人类智能与高级精神活动的生理基础。神经元(Neuron)是脑中处理信息的基本单元,大脑皮质中与功能有关的神经元主要是位于皮质层的锥体细胞。神经元存在

22、多种形态,其机能也不完全相同,但是其一般形态基本相似。神经元的结构一般可分为两部分:细胞体(Cell body)以及由它发出的一个轴突(Axon)和多个树突(Dendrite)。当神经元活动时,有微弱的电流在神经系统产生。神经元不同部位的电活动特点并不完全相同,总的来说一个神经元可产生四种信号:输入、整合、传导和输出信号。大多数情况下,树突接受传入信息,传向细胞体,轴突把信号输出到另一个细胞。人脑内的信息传递是通过细胞间的电流活动来实现的。人脑内的细胞基本上分为两类:树状细胞和星状细胞。星状细胞的电流方向呈星状,所以各方向的电流相互抵消,无法形成有效可以测量到的电流信号。而树状细胞的电流具有单

23、一方向,当大量树状细胞平行排列时会形成一个较强的电场。人脑内的大脑皮质内具有大量垂直于皮质外壳的电流,除了一部分抵消以外,大量平行的树状细胞形成了一个能够在头皮外足以测量到的电场。脑电波是大脑众多细胞同时兴奋和抑制的结果。从头皮表面(或皮层表面)所记录到的电位,是许多神经细胞活动时产生的场电位的总和,所以节律性的脑电波是许多神经细胞同时活动与同时抑制的结果,只有这样,波幅才能较大,否则相互抵消,波幅变小乃至脑电变化消失。这种同时放电和同时抑制的过程叫做“同步化7”。由于最常见的脑电波为每秒10次左右的节律,每个波的周期约100ms左右,这比神经细胞的动作电位要慢得多,与神经细胞的突触后电位的时

24、程较接近,从而提出脑电波是由神经细胞的同步性慢活动引起的。脑电信号通常是利用脑电图仪获得的。脑电图仪是专门用于测量和记录脑电图的装置,用来观察脑内神经细胞产生的电活动,它是由独立工作的许多通道组成的,每一通道包括电极、导线、放大和调理装置、记录装置等。脑电图就是由这些电极同时放在头皮表面上记录到的,是两个电极间的自发性脑生物电活动电位差随时间的变化而连续变化的曲线的记录。大脑发出的微伏级的电信号通过放在头皮上面的电极传输到信号采集器,微伏级的微弱电位变化被放大100万200万倍,经过分析前的预处理,然后才送到计算机里做有关的分析处理。根据电极放置位置的不同,脑电图分为头皮脑电图、皮层脑电图和深

25、部脑电图等。皮层脑电图和深部脑电图是带创伤性的,有时需要手术来完成,技术难度较大。头皮脑电图方法简单,无任何创伤,是常规的检测方法,本文中所指的脑电图都是头皮脑电图。记录脑电所用的电极有漏斗状、盘状和针状电极,还有需要放置在特殊部位的电极,如蝶骨电极、鼻咽电极、耳鼓电极、皮质电极和深部电极等。电极材料以火棉胶固定的Ag-AgCl或金质的盘状电极性能较好。由于现在的放大器的输入阻抗极高,其它材料也可以获得很好的效果。脑电信号的随机性表现在它所记录下来的并不是单一神经细胞综合起来的电位活动。从大脑皮层测量出来的这些综合效应,必然会受到来自体内以及体外的主观和客观方面因素的影响。影响脑电图的因素又很

26、多,诸如遗传心理因素,来自生理方面的变化以及外界的刺激等。这些影响的出现往往是随机的,因此导致了测得的脑电信号也带有随机特性。对同一个体,在不同的状态下测出的同一测量指标会又一些差别,而且即便是在相同的记录条件下,不同个体间的差异也非常明显。在脑电信号采集过程中,各种干扰也是不可避免的,有来自生理性的伪差、物理性的伪差等。脑电图中一切不是从大脑皮质中描记出来的信号都是伪差。比较常见的有肌肉活动:如咬牙、皱眉,出现高波幅(150V)快波(3060Hz);手足的大动作,各导联出现高波幅,形状不一的波形;出汗,两侧额部出现250ms慢波,形成基线不稳;眨眼,出现对称的单个或节律性100V、25030

27、0ms慢波;心电干扰,节律性与心率相同;工频干扰等。对伪差的识别不当很容易在临床上造成误诊,因此对于采集到的脑电信号,必须考虑到噪声背景的影响。在脑电信号处理中,并不是对噪声都采取滤除处理,往往要根据实际需要,采用相应的处理方法。有时候只有在去除噪声后才能获得所需的信息,而有些噪声对某些症状的分析是有用的信息,需要检测出来而不是被当作背景滤除。根据记录时间的长短,脑电信号一般可以分为短程脑电记录和长程脑电记录,两种记录均能为许多脑部疾病的诊断提供有用的信息。但是有些病理信号的出现带有很强的随机性,突然出现并且持续较短时间后就很快消失,因此在短程脑电记录中不容易被捕捉到。此时需要采用长程脑电记录

28、来检测病理信号。然而,长程脑电记录需要的时间较长,所得到数据量也较大。例如,睡眠脑波采集就是长程记录,通常需要记录长达89h的脑电数据,按每个通道每秒钟采样100200Hz,共约数万个到数十万个数据。对于数据量极大的信号,进行手工操作或人工阅读的工作量是非常大的而且也是非常困难的,依靠计算机进行自动处理已经成为临床上必不可少辅助诊断的手段。第二章分析方法及使用软件介绍2.1主成分分析方法介绍我们在研究某一个问题时,为了研究地更全面、详尽而不遗漏重要信息,总是选取尽可能多的指标。这就会带来这样的问题:选取的指标过多,给研究带来一定困难,并且众多的指标之间可能存在一定的相关性,这样就造成了信息的重

29、叠,给研究结果带来影响。那么,能否通过原始众多指标之间的线性组合,用较少几个综合指标(主成分)代替原来众多的原始指标,并且能解释原始指标大部分信息?这就是主成分分析法的基本原理。主成分分析就是将多项指标转化为少数几项综合指标,用综合指标来解释多变量的方差协方差结构。综合指标即为主成分。所得出的少数几个主成分,要尽可能多地保留原始变量的信息,且彼此不相关。它是一种数学变换方法,即把给定的一组变量通过线性变换,转换为一组不相关的变量(两两相关系数为0,或样本向量彼此相互垂直的随机变量),在这种变换中,保持变量的总方差(方差之和)不变,同时具有最大方差,称为第一主成分;具有次大方差,称为第二主成分,

30、依次类推。若共有p个变量,实际应用中一般不是找p个主成分,而是找出m(m<p)个主成分就够了,只要这m个主成分能反映原来所有变量的绝大部分的方差8。主成分分析中为了消除量纲和数量级,通常需要将原始数据进行标准化,将其转化为均值为0方差为1的无量纲数据。主成分分析法利用降维技术用少数几个综合变量来代替原始多个变量,这些综合变量集中了原始变量的大部分信息。其次它通过计算综合主成分函数得分,对客观经济现象进行科学评价。再次它在应用上侧重于信息贡献影响力综合评价。2.2软件介绍2.2.1关于MATLABMATLAB语言起源于1980年美国Clever Moler教授在线性代数领域的早期工作,于1

31、984年出现了MATLAB的第一个商业版本。MATLAB语言具有强大的数学运算能力、方便实用的绘图功能及语言的高度集成性,使其在许多科学与工程领域的应用越来越广,并且有着更广阔的应用前景和无穷无尽的潜能。因此在开发工具的选择上,我们采用了高性能用于工程计算的编程软件美国MathWorks公司推出的MATLAB(R2010b)。MATLAB是一种高性能用于工程计算的编程软件,它把科学计算、结果的可视化和编程都集中在一个十分方便的环境中。它语言简洁紧凑,运算符丰富灵活;既有结构化的控制语言,又能面向对象编程;语法限制不严格,程序设计自由度大,并且程序的可移植性较好;MATLAB强大的图形用户界面设

32、计增加了极大的灵活性和可视化程度。MATLAB强大的扩展功能为各个领域的应用提供了基础。MATLAB工具箱包括统计工具箱、优化工具箱、偏微分方程数值解工具箱、样条工具箱、信号处理工具箱及曲线拟合工具箱等,这些工具箱为各个领域的研究和工程应用提供了有力的工具,各个层次的研究人员可直观、方便地进行分析、计算及设计工作,从而大大地节省了时间。MATLAB的优势就在于矩阵的操作,MATLAB的Symbolic Math工具箱把处理的矩阵类型扩展到各种各样的非数值矩阵,其中丰富的拓展命令就是我们进行矩阵操作的基础。MATLAB(R2010b)在以往MATLAB的基础上又改进和完善了整个图形处理功能,包括

33、一般数据可视化软件都具有的功能(例如二维曲线和三维曲面的绘制和处理等)和一些其他软件所没有的功能(例如图形的光照处理、色度处理以及四维数据的表现等)。MATLAB(R2010b)还对一些特殊的可视化要求(如图形对话等)新增了相应的功能函数,还着重改善了图形用户界面(GUI)的制作,满足了对这些方面有特殊要求的用户。MATLAB(R2010b)可以把自己的MATLAB程序自动转换为独立运行的C和C+代码,仅仅利用它的编译器和C/C+数学库和图形库,还可以编写与MATLAB进行交互的C或C+语言程序。另外,在Web应用中可以使用自己的MATLAB数学和图形程序,只需要通过其网页服务程序。综上所述,

34、MATLAB(R2010b)在各个方面都表现的十分出色,突出自己的特点和强大功能。在开发环境中,用户可以更方便地控制多个文件和图形窗口:在编程方面,支持了函数嵌套,有条件中断等;在图形化方面,有强大的图形标注和处理功能;在输入输出方面,可以直接链接Excel和HDFS进行。2.2.2关于EASTEAST全称EEG Analysis System Tool,该系统是一个运用MATLAB语言编写的脑电图数据分析系统,包括读取脑电图数据文件,显示脑电图数据,转换脑电图数据,处理脑电图数据,分析参数设置,设置数据显示几大模块。EEG Analysis System Tool系统的功能齐全,极大地方便了

35、脑电图数据的输入、分析和可视化的显示分析结果,提高计算效率和缩短分析时间,因此缩小了我们研究脑电图数据的研究周期,给予我们很大的帮助。此系统的另一个优点是以矩阵的形式把数量庞大的脑电图信号通过转换存储到计算机中,从而减少数据计算所需时间,提高计算效率,也节省了存储空间。第三章脑电图试验3.1脑电图获取方法脑电图是脑神经电生理活动在大脑皮层或头皮表面的总体反映,也就是通过电极记录下来的脑细胞群的自发性、节律性脑电活动。严格地讲,脑电图能够在多种不同的水平上,如直接在脑内神经元及突触上(用微电极),或在大脑皮层(用硬膜下电极),或仅在头骨(用硬脑膜上电极),或在皮肤表面(用头皮电极)被检测出来。根

36、据电极放置方式的不同,脑电图分为头皮脑电图、皮层脑电图及深部脑电图。其中头皮脑电是大脑神经电活动产生的电场经容积(由皮层、颅骨、脑膜及头皮构成)传导后在头皮上的电位分布9。皮层脑电图是指在开颅手术时将电极放置在大脑皮层描记下来的脑电图。深部脑电图是指皮层下各种结构的电活动的记录。本文中所指的脑电图就是常规的头皮脑电图,是通过头皮表面上的电极所记录到的电极周围1厘米至几厘米范围内各神经细胞电活动的综合反应,是无创伤性的检测脑电的常规方法所得到的客观真实的脑电图。3.2实验的方法与步骤本课题的实验原理是用不同情感事件刺激大脑产生不同的感情变化。分别用不同的情感事件去刺激大脑,分析研究在由各种外界刺

37、激诱发的各种大脑情绪状态下产生的脑电信号以及大脑内部的联系和潜在规律。本课题的所有实验对象均为本校学生,其中1名男生惯用左手,其他人均为惯用右手。通过调查发现他们均身体健康,没有严重的神经系统疾病史和精神病药物服用史。每名受试者共完成两次试验,每次试验大约40分钟。为了引导出这些受试者的主观情绪,我们进行了情感变化实验来刺激他们的大脑,由此引出特殊的情感。为引出受试者愉悦的情感,选取了一段2分钟长度的人捉弄猫的视频;为引出非愉悦的情感,选取一段没有任何内容,只有不断向下移动的黑白条纹的视频,为了排除其他条件可能产生的干扰,选取的这两段视频都为黑白的且没有声音,从而保证只有视频中的内容才会对受试

38、者的感情产生干扰。实验地点选在尽量没有强度光线,温度适宜,没有外界噪音干扰的房间进行,在每次实验之前都详细记录实验对象的基本信息与状态。做实验之前告知他们实验过程,然后让实验对象坐在脑电图仪器前。安装脑电极后,检查所有有效电极的原始电压信号。整个实验过程都需要记录实验对象的脑电图数据。首先需要安装脑电极以获得实验数据。EEG的脑电极为头皮盘状电极,具体安装步骤如下:(l)使用沾有酒精或医用皂液的棉棒清洁要固定电极所在位置上的皮肤,除去油脂,然后使用干棉棒擦干。(2)在己清洁皮肤上挤出直径1cm的少量EEG粘合剂,避免铺开的粘合剂太薄或形成太大面积。(3)挤出少量EEG粘合剂到片式电极上,在先前

39、沾有粘合剂的皮肤位置上轻轻按下电极。安装脑电极后,检查所有有效电极的原始电压信号。完整的实验过程:第一步:受试者安静闭眼保持三分钟,其后受试者睁眼调整坐姿,为避免实验中不能长久的坚持坐姿而有动作,对脑电图数据产生干扰;第二步:受试者观看一段人捉弄猫的视频;第三步:受试者观看一段没有任何内容,只有不断向下移动的黑白条纹的视频;第四步:受试者安静闭眼保持三分钟,试验结束。实验结束后,操作者对实验对象进行问卷调查,发现实验对象都对人捉弄猫的视频比较喜欢,对移动的黑白条纹视频比较厌烦,因此可以判断出大部分实验对象产生了愉悦的情感和不愉快的情感,最后实验操作者将实验对象的信息添加完善。3.3实验的注意事

40、项1、将头发洗干净,不要涂抹油性物质,保证头皮的清洁,使电极与大脑皮层紧密贴合,便于数据的传输。2、在整个实验过程中,尽量保证不要晃动,以免与设备接触不良。3、实验前一晚要有充足的睡眠,实验前要进餐,以防低血糖影响实验结果。4、实验前3天停用各种药物。大多数药物对脑机能会产生直接或间接的影响,尤其是那些直接作用于中枢神经系统的药物可引起明显的脑电波变化。具体变化与个体差异、药物种类、服药方法、药量等都有很大关系。如口服给药,刚开始和增加药量时会出现脑波变化,有些在停药后的短期内脑波改变仍可持续存在,甚至会出现一种反跳现象而见到脑电波增强。5、脑电图实验室要安静舒适,以保证实验对象注意力的高度集

41、中。6、实验指导人员应将实验要求给受试者解释清楚,让受试者能充分理解和合作,并严格按实验指导人员的指令去做。第四章数据分析4.1计算分析数据的流程对数据进行主成分分析之前要做一些前期准备工作,先把从脑电图仪直接导出来的脑电图原始数据转存到EEG Analysis System Tool系统中,经过转换之后的数据变成每一列是脑电极数据,每一行是时间点的矩阵。每个数据文件大约包含52个左右的Epoch,每个Epoch是一个数据块block,采样频率为500Hz,每个数据文件大约由300000个点组成。由于伪差造成的影响,在对数据进行主成分分析之前还需要对数据进行过滤。课题需要的是波,所以在主窗口界

42、面选择过滤成4到8HZ波段,选择引起感情变化的数据,再选择相应的电极就可以进行分析。在系统中这些功能无需再次编写程序,这些功能都是系统自带的功能,系统为分析处理数据提供的这一系列功能有效提高了课题研究的速率。具体操作方法如下:打开MATLAB软件调用EAST系统,在数据下拉列表中,选择与本论文题目相关的“情视”数据,按“DONE”按钮,EAST系统就会对与感情变化事件相关的数据进行分析(见图4-1)。在接下来出现的数据分析窗口中,在“Final Project”下拉选项中选择“于文杰(感情变化波主成分分析的研究)”(见图4-2),然后EAST程序会显示波的主成分贡献率统计图(见图4-4至图4-

43、8)及数据分析的结果(见图4-3)。图4-1调用“情视”实验数据图4-2选择相应的方法进行数据分析图4-3数据分析的结果4.2数据图以下数据图中,图4-4至图4-8为部分实验对象的波主成分贡献率统计图。图中M代表实验对象为男,F代表实验对象为女,L代表实验对象惯用左手,R代表实验对象惯用右手,Theta代表波,pleasure代表愉快,Unpleasure代表不愉快。横轴表示从大到小排列的主成分,纵轴表示各个主成分的贡献率。图4-9至图4-12为统计在Excel中的实验结果图,“1”代表实验结果与假设相符,“0”代表实验结果与假设不相符,对“1”求和,再除以实验总人数,得到的就是相关系数百分比

44、。其中每个图的第一行是第一主成分的数据,第二行是第二主成分的数据。图4-4孙启蒙(男/左手)图4-5李青(女/右手)图4-6张有为(男/右手)图4-7董永峰(男/右手)图4-8刘博闻(男/右手)图4-9男性/左手图4-10男性/右手(1)图4-11男性/右手(2)图4-12女性/右手4.3数据分析本研究是对脑电图数据进行波段(48Hz)过滤,提取出波,再对波进行主成分分析。从实验数据得到的主成分当中,需要提取出贡献率较大的主成分进行分析。在本研究中只提取出两个主成分进行分析,根据贡献率的大小,将其分别命名为第一主成分和第二主成分。其中第一主成分贡献率能有效的体现大脑机能的变化,加上第二主成分贡

45、献率更能很好的表现原变量所表示的信息。人捉弄猫的视频,引出愉悦的情感,表示为“pleasure”;没有任何内容,只有不断向下移动的黑白条纹的视频,引出非愉悦的情感,表示为“unpleasure”。因为在受愉快的情感事件刺激时,脑部兴奋的感觉增加,精神活动强烈,脑负荷就越强烈,所以我们假设愉快情绪的波主成分贡献率大于不愉快情绪的波主成分贡献率,即波主成分贡献率受愉快情绪的影响较大,这个假设的相关系数就是pleasure>Unpleasure。在数据分析中,若实验结果与假设的结果相符,则用“1”来表示,若不相符,则用“0”表示。对出现“1”的次数求和,再除以总人数,得到的就是相关系数plea

46、sure>Unpleasure占总人数的百分比(见图4-9至图4-12),我们把这个百分比称为相关系数百分比。当相关系数百分比大于50%时,表示半数以上的人与假设相符,即波的主成分贡献率受愉快的情绪影响较大,愉快的情绪增加,波的主成分贡献率增大;当相关系数百分比小于50%时,表示半数以下的人与假设相符,假设不成立,即受不愉快情绪影响较大的人占大多数,不愉快的情绪增加,波的主成分贡献率增大。由于受试者的性别和在日常生活中习惯用左手或者右手都会对脑电图产生一定的影响,因此有必要对程序输出结果进行分组。共分成四组,即“女性/左手”、“女性/右手”、“男性/左手”和“男性/右手”。通过实验得到的

47、样本如下:男性惯用右手者65人,男性惯用左手者2人,女性惯用右手者28人,女性惯用左手者0人。由于男性左手惯用者数据不足,不能很好地反映其中的规律性,女性左手惯用者没有数据,因此对以上两组不做分析。下面对男性惯用右手者和女性惯用右手者进行具体分析:根据图4-10和图4-11可知,男性惯用右手者波第一主成分的相关系数百分比为57%,所以波的第一主成分贡献率受愉快情绪的影响较大,但是由于接近50%,规律性不强不能得到可靠结论。男性惯用右手者波第二主成分的相关系数百分比为42%,所以波的第二主成分贡献率受不愉快情绪的影响较大,但同样接近50%,规律性不强不能得到可靠结论。根据图4-12可知,女性惯用

48、右手者波第一主成分的相关系数百分比为75%,并且由于75%偏离50%较远,能较好地反映出规律性,因此可以得到可靠的结论,即波的第一主成分贡献率受愉快情绪的影响较大,随着愉快的情绪增加波的第一主成分贡献率增大。女性惯用右手者波第二主成分的相关系数百分比为18%,同样偏离50%较远,可以得到可靠的结论,即波的第二主成分贡献率受不愉快情绪的影响较大,随着不愉快的情绪增加波的第二主成分贡献率增大。结论本课题通过做实验采集脑电图数据,又运用一系列方法筛选出波数据,最后对波数据进行了主成分分析,提取波第一主成分和第二主成分。第一主成分贡献率可以很大程度地表现出大脑机能的变化,加上第二主成分贡献率更能很好的

49、表现原变量所表示的信息,然后观察其变化规律。不同的情感事件对大脑的刺激会产生不同的结果,可以看出波段与感情变化紧密的关系。本课题得到的结论如下:对于日常生活中习惯用右手的女性来说,波的第一主成分贡献率越大,愉快的情绪就越强烈;波的第二主成分贡献率越大,愉快的情绪越少,不愉快的情绪越多。而对于惯用右手的男性来说,由于波第一主成分、第二主成分的相关系数百分比在40%-60%之间,规律性不强,所以不能得到可靠结论。另外男性左手惯用者数据不足,女性左手惯用者没有数据,所以这三种情况不在讨论的范围之内。谢辞时光飞逝,一转眼五年的大学生涯到此即将结束,我为自己画上圆满的句号。在这五年多的时间中,除了不断的

50、充实自己,提高自己,更多的是感激。首先要感谢我的导师陈志华教授。本论文在指导教师陈志华教授的悉心指导和作者的努力之下,终于圆满完成。陈教授广博的知识、丰富的实践经验、严谨的治学态度使我受益匪浅,他的悉心指导使我学到了许许多多有用的知识,我深深感到自己在本次课题研究中取得了一些进步,这些进步离不开陈教授的培养、关心和鼓励。从论文开题到总体设计、程序设计、数据分析、对分析结果的讨论等研究工作,再到论文的撰写,陈教授都给了我很多富有指导性的意见和富有启发性的建议。研究期间陈教授多次亲临检查科研进度并进行讨论、答疑,为本课题的完成奠定了基础。我要感谢和我同组的邓亚群、李青、孙启蒙等同学。在我们无数次的

51、讨论中,算法不断完善。本文中的很多思路和方法都是集体智慧的结晶。在论文的撰写过程中,我们定期交流,互相学习。他们的建议给了我很大的启发,开阔了我的思路。在论文及诸多繁杂事务中,他们给予了无私的帮助。感谢参加实验的同学们,他们无私的奉献使我获得如此有价值的脑电图数据。同时还要感谢我父母对我的默默支持、鼓励和他们的无私关爱和培养。我将会继续学习新的知识,以此来回报他们。最后,衷心感谢为评阅本论文而付出辛勤劳动的各位老师,你们所提的宝贵意见和诚恳批评使我受益匪浅。参考文献1Christopher A. Paynter,Lynne M. Reder,Paul D. Kieffaber,Knowing we know before we

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论