《一元二次方程的根与系数的关系》课件_第1页
《一元二次方程的根与系数的关系》课件_第2页
《一元二次方程的根与系数的关系》课件_第3页
《一元二次方程的根与系数的关系》课件_第4页
《一元二次方程的根与系数的关系》课件_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 22.2.4 22.2.4 一元二次方程的一元二次方程的 根与系数的关系根与系数的关系 题题1 1口答口答下列方程的两根和与两根积各是多少?下列方程的两根和与两根积各是多少? .X.X2 23X+1=0 3X+1=0 .3X.3X2 22X=22X=2 .2X.2X2 2+3X=0 +3X=0 .3X.3X2 2=1 =1 3.121 xx121xx32.221 xx23.321 xx0.421 xx3221xx3121xx021xx基本知识基本知识在使用根与系数的关系时,应注意:在使用根与系数的关系时,应注意:不是一般式的要先化成一般式;不是一般式的要先化成一般式;在使用在使用X1+X2=

2、 时,时, 注意注意“ ”不要漏写。不要漏写。ab练习练习1已知关于已知关于x的方程的方程012) 1(2mxmx当当m= 时时,此方程的两根互为相反数此方程的两根互为相反数.当当m= 时时,此方程的两根互为倒数此方程的两根互为倒数.11分析分析:1.0121mxx2.11221 mxx212xx21xx411412,xx,xx的两个根为方程设014221题题2则:则:21xx2221xx221)(xx221)(xx221)(xx 214xx应用:一求值应用:一求值另外几种常见的求值另外几种常见的求值2111. 1xx2121xxxx ) 1)(1.(321xx1)(2121xxxx1221.

3、 2xxxx212221xxxx 21212212)(xxxxxx21. 4xx221)(xx 212214)(xxxx 求与方程的根有关的代数式的值时求与方程的根有关的代数式的值时,一般先将所求的代数式化成含两根之和一般先将所求的代数式化成含两根之和,两根之积的形式两根之积的形式,再整体代入再整体代入.练习练习2(1)设设 的两个实数根的两个实数根 为为 则则: 的值为的值为( )A. 1 B. 1 C. D.012 xx21,xx2111xx555A题3 已知两个数的和是1,积是-2,则两 个数是 。2和-1解:设两数分别为x,y则:1 yx2 yx解得:x=2y=1或 1y=2三已知两个

4、数的和与积,求两数三已知两个数的和与积,求两数题题4 如果如果1是方程是方程 的一个根,则另一个根是的一个根,则另一个根是_=_。(还有其他解法吗?)022mxx-3四求方程中的待定系数四求方程中的待定系数题题5 5 已知方程的两个实数根已知方程的两个实数根 是是且且 求求k k的值。的值。 解:由根与系数的关系得解:由根与系数的关系得 X X1 1+X+X2 2=-k=-k, X X1 1X X2 2=k+2=k+2 又又 X X1 12+ X X2 2 2 = 4 = 4 即即( (X X1 1+ X X2 2)2 -2-2X X1 1X X2 2=4 =4 K K2 2- 2(k+2-

5、2(k+2)=4=4 K K2 2-2k-8=0 -2k-8=0 = = K K2 2-4k-8-4k-8当当k=4k=4时,时, 0 0当当k=-2k=-2时,时,0 0 k=-2 k=-2解得:解得:k=4 或或k=2022kkxx2, 1xx42221 xx小结:小结: 1、熟练掌握根与系数的关系;、熟练掌握根与系数的关系; 2、灵活运用根与系数关系解决问题;、灵活运用根与系数关系解决问题; 3、探索解题思路,归纳解题思想方法。、探索解题思路,归纳解题思想方法。作业作业:试卷试卷课后练习课后练习题题6 6 方程方程 有一个正根,一个负根,求有一个正根,一个负根,求mm的取值范围。的取值范围。解解:由已知由已知,0) 1(442mmm=0121mmxx即即m0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论