初中数学教案:七年级数学《正数与负数》教案模板_第1页
初中数学教案:七年级数学《正数与负数》教案模板_第2页
初中数学教案:七年级数学《正数与负数》教案模板_第3页
初中数学教案:七年级数学《正数与负数》教案模板_第4页
初中数学教案:七年级数学《正数与负数》教案模板_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、.初中数学教案:七年级数学?正数与负数?教案模板教学目的1使学生理解的概念,并会判断一个给定的数是正数还是负数;2. 会初步应用正负数表示具有相反意义的量;3使学生初步理解有理数的意义,并能将给出的有理数进展分类;4培养学生逐步树立分类讨论的思想;5. 通过本节课的教学,浸透对立统一的辩证思想。教学建议一、重点、难点分析本课的重点是理解是由实际需要产生的以及有理数包括哪些数。难点是学习负数的必要性及有理数的分类。关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准。正、负数的引入,有各种不同的方法。教材是由学生熟知的两个实例:温度与海拔高度引入的。比0高5摄氏度记作5,比0

2、 低5摄氏度,记作5;比海平面高8848米,记作8848米,比海平面低155米记作155米。由这两个实例很自然地,把大于0的数叫做正数,把加“号的数叫做负数;0既不是正数也不是负数,是一个中性数,表示度量的“基准。这样引入正、负数,不仅有利于学生正确使用正、负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质。把负数理解为小于0的数。教材中,没有出现“具有相反意义的量的概念。这是有意回避或淡化这个概念。目的是,从正、负数引入一开场就能较深化的提醒正、负数和零的性质,帮助学生正确理解正、负数的概念。关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个

3、数必须属于某一类,又不能同时属于不同的两类。二、知识构造1正数、负数和零的概念 正数 负数 零 象1、2.5、 、48等大于零的数叫正数 象-1、-2.5, ,-48等小于零的数叫负数 0叫做零,0既不是正数也不是负数2有理数的分类三、教法建议这节课是在小学里学过的数的根底上,从表示具有相反意义的量引进负数的从内容上讲,负数比非负数要抽象、难理解因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违背科学性,又符合可承受性原那么。例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分即算术数这样,在理解算术数和负数的根底上,对有

4、理数的概念的理解就简便多了为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地浸透分类讨论的思想方法,理解分类的标准、分类的结果,以及它们的互相联络。通过正数、负数都统一于有理数,可以将对立统一的辩证思想的逐步树立浸透到日常教学中。四、概念的理解1对于正数和负数的概念,不能简单的理解为:带“号的数是正数,带“号的数是负数。例如: 一定是负数吗?答案是不一定。因为字母 可以表示任意的数,假设 表示正数时, 是负数;当 表示0时, 就在0的前面加一个负号,仍是0,0不分正负;当 表示负数时, 就不是负数了,它是一个正数,这些下节将进一步研究。2引入负数后,数的范围扩大为有理数,奇

5、数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,如6,4,2,0,2,4,6,不能被2整除的数是奇数,如5,4,2,1,3,53到如今为止,我们学过的数细分有五类:正整数、正分数、0、负整数、负分数,但研究问题时,通常把有理数分为三类:正数、0、负数,进展讨论。4通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数。五、有理数的分类整数和分数统称为有理数。1正整数、零、负整数统称为整数;正分数、负分数统称为分数。这样有理数按整数、分数的关系分类为:2整数也可以看作分母为1的分数,但为了研究方便,本章中分数是指

6、不包括整数的分数。因此,有理数按正数、负数、0的关系还可分类为:3注意概念中所用“统称二字,它与说“整数和分数是有理数的意思不大一样。前者回避了分数是否包括整数的问题,即使把整数包括在分数范围内,说“统称还是不错,而用后一种说法就欠妥了。4分数和小数的区别:分数既约分数都可表示成小数,但不是所有的小数都能表示成分数的。如圆周率就不能表示成分数。5到目前为止,所学过的数除外都是有理数。教学设计例如一一、素质教育目的一知识教学点1理解:是实际需要的2掌握:会判断一个数是正数还是负数3应用:会初步应用正负数表示温度、海拔高度等互为相反数意义的量二才能训练点通过正数、负数的学习,培养学生应用数学知识的

7、意识,训练学生擅长运用新知识解决实际问题的才能三德育浸透点1从实际问题引入正数、负数,然后通过实例稳固,让学生感知到数学知识来源于生活并为生活效劳2通过正负数的学习,浸透对立、统一的辩证思想四美育浸透点通过引人负数,学生会感觉得小学里学的数是“不全的,从而通过本节课的教学,给学生以完好美的享受二、学法引导1教学方法:采用直观演示法,老师注意创设问题情境并及时点拨,让学生从实例之中自得知识2学生学法:研究实际问题认识负数负数在实际中的应用三、重点、难点、疑点及解决方法1重点:会判断正数、负数,运用正负数表示具有相反意义的量2难点:负数的引入3疑点:负数概念的建立四、课时安排2课时五、教具学具准备

8、投影仪电脑、自制活动胶片、中国地图六、师生互动活动设计老师通过投影给出实际问题,学生研究讨论,认识负数,老师再给出投影,学生练习反响七、教学步骤一创设情境,复习导入师:提出问题:举例说明小学数学中我们学过哪些数?看谁举得全?学生活动:考虑讨论,学生们互相补充,可以答复出:整数,自然数,分数,小数,奇数,偶数师小结:为了实际生活需要,在数物体个数时,1、2、3出现了自然数,没有物体时用自然数0表示,当测量或计算有时不能得出整数,我们用分数或小数表示【教法说明】学生对小学学过的各种数是非常熟悉的,老师提出问题后学生会非常积极地回忆、答复,这时老师注意理清学生的思路,点出小学学过的数的精华部分提出问

9、题:小学数学中我们学过的最小的数是谁?有没有比零还小的数呢?学生活动:学生们考虑,头脑中产生疑问【教法说明】老师利用问题“有没有比0小的数?制造悬念,并且这时学生有一种急需知道结果的要求二探究新知,讲授新课师:为了研究这个问题,我们看两个实例出示投影1用复合胶片翻四次在冬日一天中,一个测量员测了中午12点,晚6点,夜间12点,早6点的气温如下:你能读出它们所表示的温度各是多少吗?单位学生活动:看图答复10,5,零下5,零下10板书10 5 -5 -10师:再看一个例子,中国地形图上,可以看到我国有一座世界最顶峰珠穆朗玛峰,图上标着8848,在西北部有一吐鲁番盆地,地图上标着155米,这两个数表

10、示的高度是相对海平面说的,你能说说8848米,155米各表示什么吗?出示投影2显示中国地形图,再显示珠穆朗玛峰和吐鲁番盆地的直观图形学生活动:学生考虑讨论,尝试答复:8848米表示珠穆朗玛峰比海平面高8848米;155米表示吐鲁番盆地比海平面低155米【教法说明】针对实例,老师不是自己一概地陈述而是注意学生参与意识,要学生观察、动脉、讨论后得出答案,充分发挥了学生的主体地位老师针对学生答复的情况给与指正师:以上实例中出现了5、10、155这样的数,一般地温度比0高5、10、1.6、记作5、10、1.6、,大于0的数为正数;当温度比0低于5、10、2.2记作5、10、2.2,像这样在正数前面加“

11、号叫负数;0既不是正数也不是负数师随着表达给出板书板书正数:大于0的数负数:正数前面加“号小于0的数0:既不是正数也不是负数【教法说明】在以上两个例子的根底上,对正数尤其是负数的引入已到了水到渠成的地步,这时老师描绘性地指出正数、负数的概念,学生不仅认识了什么是,还清楚地知识,是相对的三尝试反响,稳固练习1师板书后提问:第二个例子中的8848是什么数,155是什么数,海平面的高度是哪个数?2出示1投影显示例1 所有的正数组成正数集合,所有负数组成负数集合,把以下各数中的正数和负数分别填在表示正数集合和负数集合的圈里“11,4.8,7.3,0,2.7,8.12,3自己任意写出6个正数与6个负数分

12、别把它填在相应的大括号里正数集合 负数集合41某地一月份某日的平均气温大约是零下3,可用_数表示,记作_2地图册上洲西部地中海旁有一个死海湖,图上标有392,这说明死海湖面与海平面相比怎样?学生活动:1、2题学生答复,3题同桌交换审阅,4题讨论后举手答复【教法说明】l题是紧扣上面的例子把正负数应用到实例中去,既照应了前面,又认识了正负数,2题是通过判断正数负数浸透集会的概念,3题是让学生自行编正数负数,以到达自我消化吸收,4题是用实际生活中的典型例子加强对负数的理解和认识,同时也为下一步引出相反意义的量打下根底师:在0以上的温度用正数表示,0以下的温度用负数表示;高于海平面的地方用正数表示它的

13、高度,低于海平面的地方用负数表示它的高度在实际生活中还有一些与温度、海拔高度类似的量也常常用正负数表示,你能列出一些吗?学生活动:分组讨论,互相补充,两个学生答复老师对学生列举的例子给与适当分析,针对学生答复予以补充稳固练习:出示投影升1填空150表示支出50元,那么100元表示_2正常水位为0 ,水位高于正常水位0.2 记作_,低于正常水位0.3记作_3乒乓球比标准重量重0.039记作_;比标准重量轻0.019记作_;标准重量记作_2一个学生演示,老师提出要求规定向前走为正1向前走2步记作_2向后走5步记作_3“记作6步他应怎么走?“记作4步呢?4原地不动记作_出示投影53例题一物体沿东西两

14、个相反的方向运动时,可以用正负数表示它们的运动1假如向东运动4 记作4 ,向西运动5记作_2假如7 表示物体向西运动7 ,那么6说明物体怎样运动?学生活动:l题学生审题后答复2题学生演示,其他学生观察举手答复3题答复【教法说明】用正数、负数表示相反意义的量是本节的重点首先,先让学生举出自己所熟悉的相反意义的量,并用正数负数表示,激发学生兴趣,这时再出示补充的练习中的1题,学生能非常轻松地答复出来,这时学生有一种非常轻松的感觉,噢!原来正数、负数是用来表示这样的量的紧接着,让一个学生向前后任意走,规定向前为正,让其他学生观察,第一次他向哪个方向走了?走了几步?记作什么?第二次呢?第三次呢?这时学

15、生积极观察举手答复,然后让一个学生提出类似要求“记作5应怎样走?,这样在活泼、欢快的气氛中加深了对正数负数的理解最后利用例2作为稳固练习就非常容易了,这一环节就是要学生在一种轻松愉快的气氛中获取知识,符合素质教育的要求师:通过今天这节课的学习,你能答复老师开场时提出的问题吗?有没有比零小的数?有,是负数1正数和负数表示的是一对相反意义的量2零既不是正数也不是负数八、随堂练习1判断题l0是自然数,也是偶数 20可以看成是正数,也可以看成是负数 3海拔155米表示比海平面低155米 4假如盈利1000元,记作1000元,那么亏损200元就可记作200元 5假如向南走记为正,那么10米表示向北走10

16、米 6温度0就是没有温度 2将以下各数填入相应的大括号里9, ,0, ,2019,61, ,10.8正数集合负数集合3用正数和负数表示以下各量1零上24摄氏度表示为_,零下3.5摄氏度表示为_。2足球比赛,赢2球可记作_球,输一球应记作_球九、布置作业一必做题1以下各数中哪些是正数?哪些是负数?16,0.04, , , ,0,25.8,3.6,4,9651,0.12一物体可左右挪动,设向右为正,1向左挪动12 应记作什么?2“记作8 说明什么?二选做题1一潜水艇所在高度为50 ,一条鲨鱼在艇上方10 处,鲨鱼所在的高度是多少?2甲地海拔高度是30 ,乙地海拔高度是20 ,丙地海拔高度是10 ,

17、哪个地方最高,哪个地方最低?最高的地方比最低的地方高多少?十、板书设计随堂练习答案1 2正数集合 负数集合3124,3.5;22,1作业 答案一必作题10.04, , ,25.8,9651是正数;16, ,3.6,4,0.1是负数;21向左挪动12 记作 ;2记作 说明物体向右挪动 二选作题1 2甲地最高,丙地最低,最高的地方比最低的地方高 二一、素质教育目的一知识才学点1理解有理数的意义2能把给出的有理数按要求分类3理解数0在有理数分类中的作用二才能训练点培养学生树立对数分类讨论的观点和能正确地进展分类的才能三德育浸透点通过联络与开展、对立与统一的考虑方法对学生进展辩证唯物主义教育四美育浸透

18、点通过有理数的分类,给学对称美的享受二、学法引导1教学方法:启发引导,充分表达学生为主体,注重学生参与意识2学生学法:识记练习稳固三、重点、难点、疑点及解决方法1重点:有理数包括哪些数2难点:有理数的分类3疑点:明确有理数分类标准四、教具学具准备投影仪、自制胶片五、师生互动活动设计老师用投影出示练习题,学生讨论解决,老师引导学生对有理数进展分类,学生以多种形式完成训练题六、教学步骤一复习导入出示投影11把以下各数填入相应的大括号内:6, ,3.8,0,4,6.2, ,3.8,正数集合负数集合2填空:1假设下降5 记作5 ,那么上升8 记作_,不升不降记作_2假如规定20表示收入20元,那么10

19、元表示_3假如由 地向南走3千米用3千米表示,那么5千米表示_,在 地不动记作_【教法说明】出示投影后,学生考虑,然后举手答复以下问题当学生答复完一题后老师追问:你能不能说说什么叫正数,负数呢?0是正数吗?是负数吗?通过第1小题,使学生进一步理解正、负数的概念,以及零的特殊意义通过第2小题使学生掌握对于两种相反意义的量,假如其中一种量用正数表示,那么另一种量便可以用负数表示师:在小学大家学过1,2,3,4这是什么数呢?生:自然数师:在这些自然数前面加上负号,如1,2,3,4这些是什么数呢?生:负数师:详细叫什么负数呢?师:今天我们要把大家学过的数分类命名,然后给一个统一的名称【教法说明】通过老

20、师由浅入深层层设问,使学生在头脑当中逐步认识问题这样一步一个台阶的教学过程 ,符合学生认识问题的一般规律二探究新知,讲授新课1分类数的名称1,2,3,4叫做正整数;1,2,3,4叫做负整数0叫做零, , 即叫做正分数;, , 即叫做负分数;正整数、负整数和零统称为整数正分数和负分数统称为分数整数和分数统称有理数即【教法说明】以上内容由师生共同参与完成,老师启发诱导,遵循了由详细到抽象的认识规律提出问题:稳固概念出示投影210是整数吗?是正数吗?是有理数吗?25是整数吗?是负数吗?是有理数吗?3自然数是整数吗?是正数吗?是有理数吗?【教法说明】这三道小题主要是检查学生对概念的理解新授过程中随时设

21、计习题进展反响练习,以便调节回授注意:有时为了研究的需要,整数也可以看作是分母为1的分数,这时分数包括整数,本章中的分数是指不包括整数的分数2有理数的分类为了便于研究某些问题,常常需要将有理数进展分类,需要不同,分类方法也常常不同,常用的有以下两种:1先把有理数按“整和“分来分类,再把每类按“正与“负来分类,如下表:2先把有理数按“正和“负来分类,再把每类按“整和“分来分类,如下表尝试反响,稳固练习出示投影3以下有理数中:7,10.1, ,89,0,0.67, 哪些是整数?哪些是分数?哪些是正数?哪些是负数?学生考虑,然后找同学逐一答复其他同学准备补充或纠正【教法说明】通过此题,检查学生对有理

22、数分类的掌握情况,通过对有理数进展分类,培养学生树立对数分类讨论的观点和正确地进展分类的才能3数的集合我们曾经把所有正数组成的集合,叫做正数集合,所有的负数组成的集合叫做负数集合同样把所有整数组成的集合叫做整数集合;把所有分数组成的集合叫做分数集合;把所有有理数组成的集合叫做有理数集合三变式训练,培养才能出示投影41把有理数6.4,9, ,10, ,0.021,1, ,8.5,25,0,100按正整数、负整数、正分数、负分数分成四个集合正整数集合 ,负整数集合正分数集合 ,负分数集合2把以下有理数:3,8, ,0.1,0, ,10,5,0.7填入相应的集合:整数集合 ,分数集合正数集合 ,负数

23、集合【教法说明】学生考虑后,动笔完成上述第1题一个学生在黑板上板演,其他学生做在练习本上,然后师生共同订正从中进一步培养学生分类才能第2题采用分组计分形式,充分调动学生学习数学的积极性,增强学生集体荣誉感四归纳小结师:今天我们一起学习了哪些内容?由学生自己小结,然后老师再总结:今天我们一起学习了有理数的定义和两种分类方法要能正确地判断一个数属于哪一类,要特别注意“0不是正数,但是整数【教法说明】课堂小结,采取学生小结的方法,让学生积极参与教学活动,归纳出本节课所学的知识再由老师归纳总结,帮助全体学生进一步明确本节课的重点和应到达的目的五反响检测出示投影51整数和分数统称为_;整数包括_、_和零

24、,分数包括_和_2把以下各数填入相应集合的持号内:3,4,0.5,0,8.6,7整数集合 ,分数集合正有理数集合 ,负分数集合4选择题:100不是 A有理数; B自然数; C整数; D负有理数以小组为单位计分,积分最高的组为优胜组【教法说明】通过反响检测,既使学习的积极性和主动性,增强学生积极参与教学活动的意识和集体荣誉感七、随堂练习1判断题1整数又叫自然数 2正数和负数统称为有理数 3向东走20米,就是向西走20米 4温度下降2,是零上2 5非负数就是正数,非正数就是负数 2在以下适当的空格里打上“号 有理数 整 数 分 数 正整数 负分数 自然数 2 3.14 03把以下各数分别填在相应的大括号里1.8,42,0.01, ,0,3.1415926, ,1整数集合分数集合正数集合负数集合自然数集合非负数集合八、布置作业一必做题:课本第50页3、4二考虑题:把以下各数填在相应的集合中3.14,5,0, ,89,2.67

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论