




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1、用梯度法(最速下降法)求下述函数的极小点:解:取初始点。,故为极小点。其极小值。2、用梯度法(最速下降法)求函数的极小点,取允许误差。解:取初始点。故以为近似极小点,此时的函数值。该问题的精确解是。例 9 用牛顿法求例8的极小点。解 任取初始点。算出。在本例中, ,可知确实是极小值点。1、试用共轭梯度法求下述二次函数的极小点:解:将化成标准式得现从开始,由于故于是故例10 用DFP法求下述函数的极小值点:解 为了和例8及例9进行比较,仍取初始点。此外,如通常所作的那样,取初始尺度矩阵。 令得 令得 ,可知为极小值点。其函数值为。例 11 用库恩塔克条件解非线性规划 解 先将其变为问题(11
2、.60)的形式设K-T点为,各函数的梯度为对第一个和第二个约束条件分别引入广义拉格朗日乘子,则得该问题的K-T条件如下:为解该方程组,需考虑以下几种情况:(1):无解。(2):。(3):。(4):对应与上述(2)、(3)和(4)三种情形,我们得到了三个K-T点,其中和为极大值点,而为最大值点,最大值;为可行域的内点,它不是该问题的极大值点,而是极小点。例 13 用可行方案法解解 取初始可行点,。,由于,故它不是的起作用约束。取搜索方向,从而 令,解得。 由得 。故取。,。,构成线性规划问题为便于用单纯形法求解,令 ,从而得引入松弛变量和人工变量,得如下线性规划问题: 用单纯形法求解,可得最优解如下:。还原到原来的问题,得,搜索方向现先进行一维搜索,再检查所得的点是否为可行点。由,得 因为,说明是可行点。 继续做下去,可得该问题(为凸规划)的最优解,例 14 用罚函数法求解解 构造罚函数对于固定的M,令对于不满足约束条件的点,有从而求得其最小值点如下: 当时,;当时,;当时,;当时,说明原约束问题的极小点是。例 15 用罚函数法求解: 解 构造罚函数 现考虑第一象限中的点,可令 ,为求极值点,令,得到 再令 ,并代入上述结果,得 令,得。即该问题的最优点是。例 16 用障碍函数法求解 解 构造如下形式的障碍函数 对某一固定的,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑施工现场安全管理信息化措施
- 五年级语文下册复习计划的家校合作
- 最美教师教学经验分享范文
- 钢结构工程施工安全与质量措施
- IT企业后勤管理及岗位职责框架
- 中小学校长职业发展培训心得体会
- 环保施工设备对扬尘治理的作用措施
- 2025幼儿园食品安全管理小组及职责
- 小学语文下册在线教学计划设计
- 校级家长会课件背景图片
- DL∕T 1098-2016 间隔捧技术条件和试验方法
- 标准离婚协议书模板民政局
- 2024新民政局离婚协议书参考样板
- JBT 14449-2024 起重机械焊接工艺评定(正式版)
- 专题12 电功率图像的四种类型(原卷版)-2023-2024学年九年级物理全一册学优生期中期末复习难点题型专项突破(人教版)
- 垃圾分类台账制度
- 《产生气体的变化》小学科学六年级下册课件
- 团队境内旅游合同2014版
- 2024年南京市鼓楼区名小六年级毕业考试语文模拟试卷
- 二年级数学三位数加减三位数计算题同步作业练习题
- 浙江省宁波市镇海区2022~2023学年六年级下学期毕业考试数学试卷
评论
0/150
提交评论