陕西卷数学试题及答案文_第1页
陕西卷数学试题及答案文_第2页
陕西卷数学试题及答案文_第3页
陕西卷数学试题及答案文_第4页
陕西卷数学试题及答案文_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2015年普通高等学校招生全国统一考试(陕西卷)文科数学一选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(本大题共10小题,每小题5分,共50分).1. 设集合,则( )A B C D2. 某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A93 B123 C137 D1673. 已知抛物线的准线经过点,则抛物线焦点坐标为( )A B C D4. 设,则( )A BC D5. 一个几何体的三视图如图所示,则该几何体的表面积为( )A BC D6. “”是“”的( )A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充

2、分也不必要7. 根据右边框图,当输入为6时,输出的( )A B C D8. 对任意向量,下列关系式中不恒成立的是( )A BC D9. 设,则( )A既是奇函数又是减函数 B既是奇函数又是增函数 C是有零点的减函数 D是没有零点的奇函数10. 设,若,则下列关系式中正确的是( )A B C D11. 某企业生产甲乙两种产品均需用A,B两种原料,已知生产1吨每种产品需原料及每天原料的可用限额表所示,如果生产1吨甲乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A12万元 B16万元 C17万元 D18万元12. 设复数,若,则的概率( )A B C D 二.填空题:把答案填

3、写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分).13、中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为_14、如图,某港口一天6时到18时的谁深变化曲线近似满足函数y3sin(x)k,据此函数可知,这段时间水深(单位:m)的最大值为_.15、函数在其极值点处的切线方程为_.16、观察下列等式:111据此规律,第n个等式可为_.三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分)17的内角所对的边分别为,向量与平行.()求;()若求的面积.18如图1,在直角梯形中,是的中点,是与的交点,将沿折起到图2中的位置,得到四棱锥.(

4、)证明:平面;()当平面平面时,四棱锥的体积为,求的值.19.随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:日期123456789101112131415天气晴雨阴阴阴雨阴晴晴晴阴晴晴晴晴日期161718192021222324252627282930天气晴阴雨阴阴晴阴晴晴晴阴晴晴晴雨()在4月份任取一天,估计西安市在该天不下雨的概率;()西安市某学校拟从4月份的一个晴天开始举行连续两天的运动会,估计运动会期间不下雨的概率.20如图,椭圆经过点,且离心率为.()求椭圆的方程;()经过点,且斜率为的直线与椭圆交于不同两点(均异于点),证明:直线与的斜率之和为2.21. 设()

5、求;()证明:在内有且仅有一个零点(记为),且.考生注意:请在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时用2B铅笔在答题卡上把所选题目的题是以后的方框涂黑.22. 选修4-1:几何证明选讲如图,切于点,直线交于两点,垂足为.()证明:()若,求的直径.23. 选修4-4:坐标系与参数方程在直角坐标版权法吕,直线的参数方程为为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,的极坐标方程为.()写出的直角坐标方程;()为直线上一动点,当到圆心的距离最小时,求点的坐标.24. 选修4-5:不等式选讲已知关于的不等式的解集为()求实数的值;()求的最大值.参考答案一

6、、选择题:1.A2.C3.B4.C5.D6.A7.D8.B9.B10.C11.D12.C二、填空题:13.514.815.16.三、解答题:17解:()因为,所以由正弦定理,得,又,从而,由于所以()解法一:由余弦定理,得,而,得,即因为,所以,故面积为.解法二:由正弦定理,得从而又由,知,所以故,所以面积为.18.解:()在图1中,因为是的中点,所以即在图2中,从而平面,又,所以平面()由已知,平面平面,且平面平面 ,又由(),所以平面,即是四棱锥的高,由图1知,平行四边形的面积,从而四棱锥的为由,得19.解:()在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安

7、市不下雨的概率是()称相邻两个日期为“互邻日期对”(如1日与2日,2日与3日等),这样在4月份中,前一天为晴天的互邻日期对有16对,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为,以频率估计概率,运动会期间不下雨的概率为.20.解:()由题意知,结合,解得,所以,椭圆的方程为;()由题设知,直线的方程为,代入,得,由已知,设,则,从而直线与的斜率之和.21.解:()解法一:由题设,所以 则 得,所以 解法二:当时,则可得()因为,所以在内至少存在一个零点,又所以在内单调递增,因此,在内有且只有一个零点,由于,所以由此可得故所以22.解:()因为是的直径,则又,所以从而又切于点,得所以()

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论