




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、习题九1. 求下曲线在给定点的切线和法平面方程:(1)x=asin2t,y=bsintcost,z=ccos2t,点;(2)x2+y2+z2=6,x+y+z=0,点M0(1,-2,1);(3)y2=2mx,z2=m-x,点M0(x0,y0,z0).解:曲线在点的切向量为当时, 切线方程为.法平面方程为即 .(2)联立方程组它确定了函数y=y(x),z=z(x),方程组两边对x求导,得解得 在点M0(1,-2,1)处,所以切向量为1,0,-1.故切线方程为法平面方程为1(x-1)+0(y+2)-1(z-1)=0即x-z=0.(3)将方程y2=2mx,z2=m-x两边分别对x求导,得于是 曲线在点
2、(x0,y0,z0)处的切向量为,故切线方程为法平面方程为.2. t (0 < t < 2)为何值时,曲线L:x = t-sint, y=1-cost, z = 4sin在相应点的切线垂直于平面,并求相应的切线和法平面方程。解:,在t处切向量为,已知平面的法向量为.且,故解得,相应点的坐标为.且故切线方程为法平面方程为即 .3. 证明:螺旋线x = acost, y = asint, z = bt的切线与z轴形成定角。证明:螺旋线的切向量为.与z轴同向的单位向量为两向量的夹角余弦为为一定值。故螺旋线的切线与z轴形成定角。4. 指出曲面z = xy上何处的法线垂直于平面x-2y+z
3、=6,并求出该点的法线方程与切平面方程。解:zx=y, zy=x.曲面法向量为.已知平面法向量为.且,故有解得x=2,y=-1,此时,z=-2.即(2,-1,-2)处曲面的法线垂直于平面,且在该点处的法线方程为.切平面方程为-1(x-2)+2(y+1)-(z+2)=0即 x-2y+z-2=0.5. 求下列曲面在给定点的切平面和法线方程:(1)z = x2+y2,点M0(1,2,5);(2)z = arctan,点M0(1,1,);解:(1)故曲面在点M0(1,2,5)的切平面方程为z -5=2(x-1)+4(y-2).即 2x+4y-z=5.法线方程为(2)故曲面在点M0(1,1,)的切平面方
4、程为z-=- (x-1)+(y-1).法线方程为.6. 证明:曲面xyz = a3上任一点的切平面与坐标面围成的四面体体积一定。证明:设 F(x,y,z)=xyz-a3.因为 Fx=yz,Fy=xz,Fz=xy,所以曲面在任一点M0(x0,y0,z0)处的切平面方程为y0z0(x-x0)+x0z0(y-y0)+x0y0(z-z0)=0.切平面在x轴,y轴,z轴上的截距分别为3x0,3y0,3z0.因各坐标轴相互垂直,所以切平面与坐标面围成的四面体的体积为它为一定值。7.解:平面与曲面在的切平面的法向量为 从而平面的方程为: 又的方向向量为 由求得 在上取一点,不妨取求得 由于在平面上,代入平面
5、方程中可求得.8. 求函数u=xy2+z3-xyz在点(1,1,2)处沿方向角为的方向导数。解:9. 求函数u=xyz在点(5,1,2)处沿从点A(5,1,2)到B(9,4,14)的方向导数。解:的方向余弦为故10. 求函数在点处沿曲线在这点的内法线方向的方向导数。解:设x轴正向到椭圆内法线方向l的转角为,它是第三象限的角,因为所以在点处切线斜率为法线斜率为.于是11.研究下列函数的极值:(1) z = x3+y33(x2+y2);(2) z = e2x(x+y2+2y);(3) z = (6xx2)(4yy2);(4) z = (x2+y2);(5) z = xy(axy),a0.解:(1)
6、解方程组得驻点为(0,0),(0,2),(2,0),(2,2).zxx=6x6, zxy=0, zyy=6y6在点(0,0)处,A=6,B=0,C=-6,B2AC=36<0,且A<0,所以函数有极大值z(0,0)=0.在点(0,2)处,A=6,B=0,C=6,B2AC=36>0,所以(0,2)点不是极值点.在点(2,0)处,A=6,B=0,C=6,B2AC=36>0,所以(2,0)点不是极值点.在点(2,2)处,A=6,B=0,C=6,B2AC=36<0,且A>0,所以函数有极小值z(2,2)=-8.(2)解方程组得驻点为.在点处,A=2e,B=0,C=2e
7、,B2-AC=-4e2<0,又A>0,所以函数有极小值.(3) 解方程组得驻点为(3,2),(0,0),(0,4),(6,0),(6,4).Zxx=2(4y-y2),Zxy=4(3x)(2y)Zyy=2(6xx2)在点(3,2)处,A=8,B=0,C=18,B2AC=8×18<0,且A<0,所以函数有极大值z(3,2)=36.在点(0,0)处,A=0,B=24,C=0,B2AC>0,所以(0,0)点不是极值点.在点(0,4)处,A=0,B=-24,C=0,B2AC>0,所以(0,4)不是极值点.在点(6,0)处,A=0,B=-24,C=0,B2AC
8、>0,所以(6,0)不是极值点.在点(6,4)处,A=0,B=24,C=0,B2AC>0,所以(6,4)不是极值点.(4)解方程组得驻点P0(0,0),及P(x0,y0),其中x02+y02=1,在点P0处有z=0,而当(x,y)(0,0)时,恒有z>0,故函数z在点P0处取得极小值z=0.再讨论函数z=ue-u由,令得u=1,当u>1时,;当u<1时,,由此可知,在满足x02+y02=1的点(x0,y0)的邻域内,不论是x2+y2>1或x2+y2<1,均有.故函数z在点(x0,y0)取得极大值z=e-1(5)解方程组得驻点为 zxx=-2y, zxy
9、=a-2x-2y, zyy=-2x.故z的黑塞矩阵为 于是 易知H(P1)不定,故P1不是z的极值点,H(P2)当a<0时正定,故此时P2是z的极小值点,且,H(P2)当a>0时负定,故此时P2是z的极大值点,且.12. 设2x2+2y2+z2+8xz-z+8=0,确定函数z=z(x,y),研究其极值。解:由已知方程分别对x,y求导,解得令解得,将它们代入原方程,解得.从而得驻点.在点(-2,0)处,B2-AC<0,因此函数有极小值z=1.在点处,B2-AC<0,函数有极大值.13. 在平面xOy上求一点,使它到x=0, y=0及x+2y-16=0三直线距离的平方之和为
10、最小。解:设所求点为P(x,y),P点到x=0的距离为|x|,到y=0的距离为|y|,到直线x+2y-16=0的距离为距离的平方和为由得唯一驻点,因实际问题存在最小值,故点即为所求。14. 求旋转抛物面z = x2+y2与平面x+y-z=1之间的最短距离。解:设P(x,y,z)为抛物面上任一点.则点P到平面的距离的平方为,即求其在条件z= x2+y2下的最值。设F(x,y,z)=解方程组得故所求最短距离为15. 抛物面z = x2+y2被平面x+y+z =1截成一椭圆,求原点到这椭圆的最长与最短距离。解:设椭圆上的点为P(x,y,z),则|OP|2=x2+y2+z2.因P点在抛物面及平面上,所
11、以约束条件为z=x2+y2, x+y+z=1设F(x,y,z)= x2+y2+z2+1(z-x2-y2)+2(x+y+z-1)解方程组得 由题意知,距离|OP|有最大值和最小值,且.所以原点到椭圆的最长距离是,最短距离是.16. 在第I卦限内作椭球面的切平面,使切平面与三坐标面所围成的四面体体积最小,求切点坐标。解:令椭球面上任一点的切平面方程为即 切平面在三个坐标轴上的截距分别为,因此切平面与三个坐标面所围的四面体的体积为即求在约束条件下的最小值,也即求xyz的最大值问题。设 ,解方程组得.故切点为,此时最小体积为*17. 设空间有n个点,坐标为,试在xOy面上找一点,使此点与这n个点的距离的平方和最小。解:设所求点为P(x,y,0),则此点与n个点的距离的平方和为解方程组得驻点又在点处Sxx=2n=A, Sxy=0=B, Syy=2n=CB2-AC=-4n2<0, 且A>0取得最小值.故在点处,S取得最小值.即所求点为.*18. 已知过去几年产量和利润的数据如下:产量x(件)404755709010
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网络直播平台流量分成与电商平台合作合同
- 深海地质勘探专利许可与技术升级改造协议
- 电商企业进口退税担保及税务风险管理合同
- 古钱币鉴定设备租赁与品牌授权与售后服务协议
- 大数据技术入股合作框架协议
- 大数据股权收益权转让与数据分析合作协议
- 美团外卖平台餐饮商家线上订单处理协议
- 离婚协议在线电子签署及履行监督协议
- 工业自动化生产线传感器设备采购、安装及维护服务合同
- 介入治疗和护理
- 2025年合肥市中煤矿山建设集团安徽绿建科技有限公司招聘笔试参考题库附带答案详解
- 《基于UASB+AO工艺的屠宰污水处理工艺设计》15000字(论文)
- 2023年商务部直属事业单位招聘笔试真题
- 【MOOC】创业管理-江苏大学 中国大学慕课MOOC答案
- 施工项目部材料管理制度
- 薪酬福利经理年度述职报告
- 深邃的世界:西方绘画中的科学学习通超星期末考试答案章节答案2024年
- 2024年大学本科课程教育心理学教案(全册完整版)
- 配音基础知识课件
- 卡西欧手表EFA-120中文使用说明书
- -小学英语人称代词与物主代词讲解课件(共58张课件).课件
评论
0/150
提交评论