




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、典型例题 例1 设,求证:分析:发现作差后变形、判断符号较为困难考虑到两边都是正数,可以作商,判断比值与1的大小关系,从而证明不等式证明:,. 又,.说明:本题考查不等式的证明方法比较法(作商比较法).作商比较法证明不等式的步骤是:判断符号、作商、变形、判断与1的大小.例2已知、,求证分析 显然这个题用比较法是不易证出的。若把通分,则会把不等式变得较复杂而不易得到证明由于右边是一个常数,故可考虑把左边的式子变为具有“倒数”特征的形式,比如,再利用“均值定理”就有可能找到正确的证明途径,这也常称为“凑倒数”的技巧证明: ,同理:,。 说明:此题考查了变形应用综合法证明不等式题目中用到了“凑倒数”
2、,这种技巧在很多不等式证明中都可应用,但有时要首先对代数式进行适当变形,以期达到可以“凑倒数”的目的.例3 已知,求证:0.分析:此题直接入手不容易,考虑用分析法来证明,由于分析法的过程可以用综合法来书写,所以此题用两种方法来书写证明过程.证明一:(分析法书写过程)为了证明0只需要证明0成立0成立证明二:(综合法书写过程) 0成立0成立说明:学会分析法入手,综合法书写证明过程,但有时这两种方法经常混在一起应用,混合应用时,应用语言叙述清楚.例4 若,求证分析:本题结论的反面比原结论更具体、更简、宜用反证法证法一:假设,则,而,故从而,这与假设矛盾,故证法二:假设,则,故,即,即,这不可能从而证
3、法三:假设,则由,得,故又,即这不可能,故说明:本题三种方法均采用反证法,有的推至与已知矛盾,有的推至与已知事实矛盾一般说来,结论中出现“至少”“至多”“唯一”等字句,或结论以否定语句出现,或结论肯定“过头”时,都可以考虑用反证法例5 已知,求证分析:联想三角函数知识,进行三角换元,然后利用三角函数的值域进行证明证明:从条件看,可用三角代换,但需要引入半径参数,可设,其中由,故而,故说明:1三角代换是最常见的变量代换,当条件为或或时,均可用三角代换2用换元法一定要注意新元的范围,否则所证不等式的变量和取值的变化会影响其结果的正确性例6 设是正整数,求证分析:要求一个项分式的范围,它的和又求不出
4、来,可以采用“化整为零”的方法,观察每一项的范围,再求整体的范围证明:由,得当时,;当时,当时,说明:1、用放缩法证明不等式,放缩要适应,否则会走入困境例如证明由,如果从第3项开始放缩,正好可证明;如果从第2项放缩,可得小于2当放缩方式不同,结果也在变化2、放缩法一般包括:用缩小分母,扩大分子,分式值增大;缩小分子,扩大分母,分式值缩小;全量不少于部分;每一次缩小其和变小,但需大于所求,第一次扩大其和变大,但需小于所求,即不能放缩不够或放缩过头,同时放缩后便于求和例7已知,求证:在三数中,不可能都大于分析:此命题的形式为否定式,宜采用反证法证明假设命题不成立,则三数都大于,从这个结论出发,进一
5、步去导出矛盾证明:假设三数都大于,即,又,又,以上三式相加,即得:例8 已知,且求证:分析:记,欲证,联想到正、余弦函数的值域,本题采用三角换元,借助三角函数的变换手段将很方便,由条件,可换元,围绕公式来进行证明:令,且,则,即成立说明:换元的思想随处可见,这里用的是三角代换法,这种代换如能将其几何意义挖掘出来,对代换实质的认识将会深刻得多,常用的换元法有:(1)若,可设;(2)若,可设,;(3)若,可设,且例9 求证分析:此题的难度在于,所求证不等式的左端有多项和且难以合并,右边只有一项注意到这是一个严格不等式,为了左边的合并需要考查左边的式子是否有规律,这只需从下手考查即可证明:,说明:此
6、题证明过程并不复杂,但思路难寻本题所采用的方法也是解不等式时常用的一种方法,即放缩法这类题目灵活多样,需要巧妙变形,问题才能化隐为显,这里变形的这一步极为关键例10 在中,角、的对边分别为,若,求证分析:因为涉及到三角形的边角关系,故可用正弦定理或余弦定理进行边角的转化证明:,由余弦定理得, = 说明:三角形中最常使用的两个定理就是正弦和余弦定理,另外还有面积公式本题应用知识较为丰富,变形较多这种综合、变形能力需要读者在平时解题时体会和总结,证明不等式的能力和直觉需要长期培养例11 设,解关于的不等式分析:进行分类讨论求解解:当时,因一定成立,故原不等式的解集为当时,原不等式化为;当时,解得;当时,解得当时,原不等式的解集为;当时,原不等式的解集为说明:解不等式时,由于,因此不能完全按一元二次不等式的解法求解因为当时,原不等式化为,此时不等式的解集为,所以解题时应分与两种情况来讨论在解出的两根为,后,认为,这也是易出现的错误之处这时也应分情况来讨论:当时,;当时,例12 不等式的解集为,求与的值分析:此题为一元二次不等式逆向思维题,要使解集为,不等式需满足条件,的两根为,解:设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 手术室护理指南:手术隔离技术
- 胜任才是硬道理培训教材
- 中班健康:身体上的宝贝
- 糖尿病合并高血压个案护理
- 转移性骨肿瘤的护理及管理
- 2025年品质培训资料
- 住宅小区停车库租赁合同
- 办公家具定制化设计与售后服务承诺书
- 城市绿化带场地无偿使用与生态维护协议
- 电力设备与厂房使用权转让合同
- 小学语文扩句、缩句专题
- 农村公路安全生命防护工程施工方案
- (部编版)统编版小学语文教材目录(一至六年级上册下册齐全)
- 抗滑桩专项的施工组织方案[专家评审]
- 常用弹簧钢号对照表
- 应用回归分析(第三版)何晓群_刘文卿_课后习题答案_完整版
- 小学二年级下册劳动教案
- 食品安全及卫生保证措施
- 60m3卧式液化石油气储罐设计
- 树脂的污染及处理
- 食品企业虫害控制培训课件.pptx
评论
0/150
提交评论