




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上常见不等式通用解法总结一、基础的一元二次不等式,可化为类似一元二次不等式的不等式基础一元二次不等式如,对于这样能够直接配方或者因式分解的基础一元二次不等式,重点关注解区间的“形状”。当二次项系数大于0,不等号为小于(或小于等于号)时,解区间为两根的中间。的解为当二次项系数大于0,不等号为大于(或大于等于号)时,解区间为两根的两边。的解为当二次项系数小于0时,化成二次项系数大于0的情况考虑。可化为类似一元二次不等式的不等式(换元)如,令,原不等式就变为,再算出t的范围,进而算出x的范围又如,令,再对a进行分类讨论来确定不等式的解集含参数的一元二次不等式解法步骤总结:序号
2、步骤1首先判定二次项系数是否为0,为0则化为一元一次不等式,再分类讨论2二次项系数非0,将其化为正的,讨论判别式的正负性,从而确定不等式的解集3若可以直接看出两根,或二次式可以因式分解,则无需讨论判别式,直接根据不同的参数值比较两根大小4综上,写出解集如不等式,首先发现二次项系数大于0,而且此不等式无法直接看出两根,所以,讨论的正负性即可。此不等式的解集为又如不等式,发现其可以通过因式分解化为,所以只需要判定和的大小即可。此不等式的解集为又如不等式,注意:有些同学发现其可以因式分解,就直接写成,然后开始判断两根和的大小关系,这样做是有问题的。事实上,这个题目中并没有说此不等式一定是一元二次不等
3、式,所以参数是有可能为0的。讨论完的情况再讨论和的情况。所以此不等式的解集应该是:注意,和时解区间的状况不同,一种为中间,一种为两边。二、数轴标根法(又名穿针引线法)解不等式这种问题的一般形式是(或)步骤:将不等式化为标准式,一段为0,另一端为一次因式的乘积(注意!系数为正)或二次不可约因式(二次项系数为正)。画出数轴如下,并从最右端上方起,用曲线自右向左一次由各根穿过数轴。记数轴上方为正,下方为负,根据不等式的符号写出解集。例如,求不等式的解集,画出图如下,发现解集为为什么数轴标根法是正确的呢?对于不等式来说,要满足四项相乘为正,说明四项均正,解集为两正两负,只能是正,负,此时解集为四项均负
4、,解集为。综上,解集为这三种情况的并集。当不等式左侧有奇数项的时候同理。由此可知,遇到奇数个一次项系数为负的情况,如果不把系数化为正的,结果一定是错误的。注意,这种方法要灵活使用,若不等式为,使用数轴标根法得到的解集显然和上述不一样,因为是偶次项,必然非负,所以在“穿针引线”时,可以忽略,或者可以记住口诀“奇穿偶不穿”。的示意图见下。三、解分式不等式分式不等式的解题思路,前面讲了一些不等式的求解,都是讲不等式的一边化为0,另一边为含x的多项式。把一个分式不等式经过移项和通分处理,最终总能化为(或的形式),此时解就可以解出原不等式的解集。特别地,若要解,则解即可。例如,移项化简得,使用穿针引线法
5、得到解集为,一定要注意分母不为零,而分子可以为零。例:一道比较复杂的题,求的解集,现写出此题的完整解题过程。解:原不等式通过移项通分可化为,由于,所以可以进一步化为,两根为和。当时,解集为两根的两边,显然有,所以此时解集为当时,解集为两根中间,此时必须根据的取值判断两根范围。当时,此时解集为当时,此时解集为当时,此时解集为至此,的所有值都讨论完毕,所以这道题讨论到这样就结束了当然,如果这道题不给的限制条件,只需要再讨论一下时的解集情况即可。补充内容:一类经典但易错的分式不等式问题求的解集求的解集求的解集求的解集求的解集解答:,注意的区别四、绝对值不等式对于含有绝对值的不等式,解题思想为直接脱去
6、绝对值符号,构造函数,数形结合在不等式的一端有多个绝对值时,使用零点分段法分类讨论(分类讨论思想随处可见)平方法(不等式两边都是非负时才能用,慎用)例:图形法某经典问题,解不等式,先画出的图像如下,然后分类讨论的取值,通过观察和的图像,来确定不等式的解集情况。当时,的图像在的图像上方,除了点,此时显然不等式无解当时,的图像与的图像交点为,此时的解集为当时,的图像与的图像交点横坐标为,此时解集为当时,的图像与的图像交点横坐标为,此时解集为当然此题使用也可以做,化成,只是在讨论的时候需要细心,考虑到的所有取值。绝对值不等式的零点分段法,以及特别的做题技巧例如,发现不等号左边有两个绝对值,所以应该根
7、据两个不同的零点分段讨论当时,原不等式化为,解得当时,原不等式化为,显然无解当时,原不等式化为,解得综上,原不等式的解集为三种情况下的并集(注意,为什么是并集而不是交集?),技巧:可以将绝对值看成距离,也就是将看成数轴上点到点1的距离,将看成到-2的距离,若画出数轴,发现位于区间的点(绿色点)到区间端点的距离之和为3,位于区间之外的点到区间端点的距离之和大于3,特别地,在2处和-3处距离之和为5,所以令继续远离区间,发现距离之和大于5。也就是说的取值范围是同理,遇到减号的情况,例如,发现其取值范围是此技巧常用于填空题,既可以求不等式解集,又可以求参数的范围。例1:若存在实数使得不等式成立,则的取值范围是 ?(答案)例2:不等式的解集是 ?(答案)五、无理不等式无理不等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工业模具设计版权转让与国内外市场拓展合作补充协议
- 房地产开发股权投资协议(SPA)及预售合同管理
- 互联网网红汉堡店连锁加盟管理合同
- 网上商城债务清偿与权益维护合同
- 肺结节护理诊断
- 虚拟现实电影制作权属及收益分配协议
- 植物新品种培育与农业市场拓展合作合同
- 宠物医院投资合作与全面承包经营协议
- 外籍子女在华探视权强制执行援助合同
- 智能充电新能源充电桩建设项目股权投资及市场拓展合同
- 多能互补规划
- DB34∕T 4433-2023 检测实验室公正性风险评估技术规范
- 系统商用密码应用方案v5-2024(新模版)
- 安徽省2024年中考英语模拟试卷(含答案)4
- 2022年山东威海中考满分作文《竟然如此简单》
- 水利工程水闸泵站施工组织设计
- 第七届江西省大学生金相技能大赛知识竞赛单选题题库附有答案
- 创新方法论智慧树知到期末考试答案章节答案2024年西安理工大学
- JTS-215-2018码头结构施工规范
- 山东省日照市东港区2023-2024学年八年级下学期期末数学试题
- 湖北省武汉市武昌区2023-2024学年八年级下学期期末数学试题
评论
0/150
提交评论